# Hauptidealring

## **Definition** Hauptideal

Sei R ein Integritätsring. R heißt Hauptidealring, falls jedes Ideal  $I \subseteq R$  ein Hauptideal ist, d.h.  $I = \langle b \rangle := Rb := \{rb \mid r \in R\}$  für ein  $b \in R$ .

### Satz

Jeder euklidische Ring *R* ist ein Hauptidealring.

#### **Beweis:**

- Falls  $I = \{0\}$ , gilt  $I = \langle 0 \rangle$ . Sei also  $I \neq \{0\}$ .
- Wähle  $b \in I$  mit minimaler Norm N(b). Behauptung:  $I = \langle b \rangle$ .
- Sei  $a \in I$  beliebig. Wir müssen zeigen, dass  $a \in \langle b \rangle$ .
- Da R euklidisch ist, können wir a = qb + r für  $q, r \in R$  schreiben.
- Wegen r = a qb und  $a, b \in I$  folgt  $r \in I$ .
- Aus N(r) < N(b) und der Minimalität von N(b) folgt r = 0.
- Damit gilt a = qb und daher  $a \in \langle b \rangle$ .

Anmerkung: Da ein Generator minimale Norm besitzt, ist er eindeutig bis auf Multiplikation mit Einheiten, d.h. Elementen mit Norm 1.

## Prim versus irreduzibel

### **Definition** Irreduzibilität

Sei R ein Integritätsbereich und  $p \in R \setminus (R^* \cup \{0\})$ .

• Wir bezeichnen p als prim, falls für alle  $r, s \in R$  gilt

$$p|rs \Rightarrow p|r \text{ oder } p|s.$$

Wir bezeichnen p als irreduzibel, falls

$$p = rs \Rightarrow r \in R^* \text{ oder } s \in R^*.$$

• Wir bezeichnen *p* als *reduzibel*, falls *p* nicht irreduzibel ist.

# Irreduzible Elemente müssen nicht prim sein.

**Bsp:** Wir betrachten  $z = 2 + \sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ .

• Wir wollen zunächst zeigen, dass z irreduzibel ist. Wir betrachten

$$N(z) = z\bar{z} = (2 + \sqrt{-5})(2 - \sqrt{5}) = 2^2 - (-5) = 9.$$

• Sei  $r \in \mathbb{Z}[\sqrt{-5}]^*$ . Dann gilt rs = 1 und

$$N(rs) = N(r)N(s) = N(1) = 1.$$

- Da die Normfunktion nur positive Wert annimmt, folgt N(r) = 1.
- D.h. eine nicht-triviale Zerlegung von  $z = z_1 z_2$  erfüllt

$$N(z_1)=N(z_2)=3.$$

- Sei  $z_1 = x + y\sqrt{-5}$  mit  $N(z_1) = x^2 + 5y^2$ .
- Da  $x^2 + 5y^2 = 3$  keine Lösung in  $\mathbb{Z}^2$  besitzt, existieren in  $\mathbb{Z}[\sqrt{-5}]$  keine Elemente mit Norm 3. D.h. z ist irreduzibel.
- Es gilt  $z|3 \cdot 3$  wegen  $z \cdot \bar{z} = 9$ .
- Gleichzeitig gilt aber  $z \nmid 3$ . Damit ist z nicht prim in  $\mathbb{Z}[\sqrt{-5}]$ .
- Damit besitzt die 9 zwei verschiedene Faktorisierungen

$$9 = (2 + \sqrt{-5})(2 - \sqrt{-5}) = 3 \cdot 3.$$

## Prime Elemente sind irreduzibel.

#### Satz

Sei R ein Integritätsring und  $p \in R$  prim. Dann ist p irreduzibel.

#### **Beweis:**

- Sei p = ab. Wir müssen zeigen, dass  $a \in R^*$  oder  $b \in R^*$ .
- Da p prim ist, gilt p|a oder p|b. OBdA p|a.
- Es folgt pr = a für ein  $r \in R$ . Damit gilt p = ab = prb.
- Kürzen von p liefert rb = 1 und daher  $b \in R^*$ .

# Faktorieller Ring

#### **Definition**

Sei R ein Integritätsring. R heißt faktoriell falls jedes  $p \in R \setminus (R^* \cup \{0\})$  in ein Produkt von Primelementen zerlegt werden kann.

#### **Korollar**

Sei R faktoriell und  $p \in R$  irreduzibel. Dann ist p prim.

#### **Beweis:**

 Da p sich nicht weiter zerlegen lässt, aber ein Produkt aus Primelementen ist, muss es selbst prim sein.

# Eindeutigkeit der Primelementzerlegung

## Satz Eindeutigkeit der Primelementzerlegung

Sei R faktoriell. Dann lässt sich jedes  $r \in R$  bis auf Assoziiertheit und Reihenfolge eindeutig in Primelemente zerlegen.

#### **Beweis:**

- Seien  $r = p_1 p_2 \dots p_n = q_1 q_2 \dots q_m$  zwei Primelementzerlegungen.
- Wegen  $p_1 \mid q_1 q_2 \dots q_m$  und  $p_1$  prim, folgt  $p_1 \mid q_j$  für ein  $j \in [m]$ .
- ObdA  $p_1 \mid q_1$ , d.h.  $q_1 = sp_1$ . Da  $q_1$  irreduzibel ist, gilt  $s \in R^*$ .
- ullet Damit sind  $p_1, q_1$  assoziiert. Teilen durch  $p_1$  liefert

$$p_2p_3\dots p_n=q_2'q_3\dots q_m$$
 mit  $q_2'=sq_2$ .

Zeige analog die paarweise Assoziiertheit der restlichen Faktoren.

### Anmerkung:

In  $\mathbb Z$  sind die Zerlegungen 12=(-2)(-2)3=2(-2(-3)) äquivalent.



# Äquivalenzaussagen zu faktoriellen Ringen

## Satz Äquivalenzaussagen zu faktoriellen Ringen

Sei R ein Integritätsring und  $p \in R \setminus (R^* \cup \{0\})$ . Es sind äquivalent:

- R ist faktoriell.
- p lässt sich eindeutig in ein Produkt von Primelementen zerlegen.
  (Eindeutigkeit bis auf Reihenfolge und Assoziiertheit)
- p lässt sich eindeutig in ein Produkt von irreduziblen Elementen zerlegen. Ferner ist jedes irreduzible Element prim.
- p lässt sich in ein Produkt von irreduziblen Elementen zerlegen. Ferner ist jedes irreduzible Element prim.

#### **Beweis:**

- 1 ⇒ 2: Satz zur Eindeutigkeit der Primelementzerlegung.
- $3 \Rightarrow 4$ : trivial.
- 4 ⇒ 1: Definition eines faktoriellen Rings.

# Äquivalenzaussagen zu faktoriellen Ringen

### **Beweis:** (Fortsetzung)

- 2 ⇒ 3: Jedes prime Element ist irreduzibel. Damit erhalten wir eine eindeutige Zerlegung jedes Elements in irreduzible Faktoren.
- Bleibt zu zeigen, dass jedes irreduzible Element prim ist.
- Sei r irreduzibel und teile ab, d.h. rc = ab. Seien  $a = \prod_i a_i$ ,  $b = \prod_i b_i$ ,  $c = \prod_k c_k$  Zerlegungen in irreduzible Faktoren.
- Damit erhalten wir 2 Zerlegungen von ab in irreduzible Faktoren

$$r\prod_k c_k = \prod_i a_i \prod_j b_j.$$

- Aus der Eindeutigkeit der Zerlegung bis auf Reihenfolge und Assoziiertheit ist r zu einem der a<sub>i</sub> oder b<sub>i</sub> assoziiert.
- D.h. r teilt a oder r teilt b.



# Hauptidealringe sind faktoriell.

#### Satz

Jeder Hauptidealring *R* ist faktoriell.

Beweis: Wir zeigen Eigenschaft 4 des vorherigen Satzes.

- Zerlegung in irreduzible Faktoren: Sei  $r \in R \setminus (R^* \cup \{0\})$ .
- Solange  $r_1 = r$  reduzibel ist, zerlegen wir es weiter.
- Annahme: Zerlegung stoppt nicht, d.h. wir erhalten eine unendliche Kette  $r_i = r_{i+1}c$  echter Zerlegungen mit  $c \notin R^*$ .
- Wegen  $r_{i+1} \mid r_i$  und  $c \notin R^*$  gilt für die Ideale  $\langle r_i \rangle \subset \langle r_{i+1} \rangle$ .
- D.h. wir erhalten eine unendlich aufsteigende Kette von Idealen

$$\langle r_1 \rangle \subset \langle r_2 \rangle \subset \langle r_3 \rangle \subset \dots$$

- Andererseits ist  $I = \bigcup_{i \in \mathbb{N}} r_i$  ein Ideal (Übungsaufgabe).
- Da R ein Hauptidealring ist, gilt  $I = \langle r' \rangle$ . Wegen  $r' \in I$  folgt  $r' \in \langle r_i \rangle$  für ein geeignetes i. Damit gilt  $\langle r_i \rangle = \langle r_{i+1} \rangle = \dots$
- D.h. unsere Kette von Idealen stabilisiert (Widerspruch).

# Hauptidealringe sind faktoriell.

## Beweis: (Fortsetzung)

- Jedes irreduzible Element ist prim: Sei p irreduzibel.
- Sei  $p \mid ab$  und  $p \nmid a$ . Wir müssen zeigen, dass  $p \mid b$ .
- Betrachte das Ideal  $I = \langle p, a \rangle$ . Da R ein Hauptideal ist, gilt  $I = \langle r \rangle$ .
- Wegen  $p \in \langle r \rangle$  gilt p = rc und folglich  $r \mid p$ . Analog gilt  $r \mid a$ .
- Aus p = rc und der Irreduzibilität von p folgt  $r \in R^*$  oder  $c \in R^*$ .
- Für c ∈ R\* sind p und r assoziiert, aber p ∤ a und r | a.
  (Widerspruch)
- D.h. es muss  $r \in R^*$  gelten. Es folgt  $I = \langle p, a \rangle = \langle r \rangle = R$ .
- Damit können wir jedes Element aus R als Linearkombination von p und a mit Koeffizienten aus R darstellen.
- Insbesondere existieren  $x, y \in R$  mit xp + ya = 1.
- Multiplikation mit b und Verwendung von ab = pc' liefert

$$xpb + yab = p(xb + yc') = b.$$

• Damit gilt  $p \mid b$ .

