Übungsbetrieb

- Di. 8-10 neuer Raum HZO 60
- Anmeldung zum Übungsbetrieb erforderlich
- Anmeldung über VSPL
- Anmeldefrist: Freitag, der 02.11.

Wiederholung

Permutationen

- Fixpunkte
- Derangementzahl $D_n = n! \zeta_n$
- Zyklen
- Stirlingzahl s_{n.k} erster Art
 - Anzahl Permutationen mit k Zyklen
 - $s_{n,k} = s_{n-1,k-1} + (n-1)^* s_{n-1,k}$
- Stirlingdreieck 1. Art

Wiederholung

Teilmengen

- Rekursive Berechnung der Binomialkoeffizienten
- Pascal'sches Dreieck
- k-Partition
- Stirlingzahl S_{n,k} zweiter Art
 - Anzahl der k-Partitionen einer n-elementigen Menge
 - $S_{n,k} = S_{n-1,k-1} + k^*S_{n-1,k}$
- Stirlingdreieck 2. Art
- Bellzahlen: ∑n_{k=1} S_{n,k}

Wiederholung

Zahlpartitionen

- geordnet
 - □ Reihenfolge der Summanden wichtig: 1+2, 2+1
 - lacksquare Anzahl $inom{n-1}{k-1}$
- ungeordnet P_{n,k}
 - □ Reihenfolge der Summanden unerheblich: 1+2 = 2+1
 - $P_{n+k,k} = \sum_{i=1}^{k} P_{n,i}$

Verteilen von Bällen in Urnen

Abbildungsfunktion f: $B \Rightarrow U$ mit |B|=n und |U|=m

Betrachten folgende Fälle

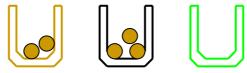
- Bälle unterscheidbar/nicht unterscheidbar
- Urnen unterscheidbar/nicht unterscheidbar
 - f beliebig, d.h. wir verteilen die Bälle beliebig
 - f injektiv, d.h. jede Urne enthält höchstens einen Ball
 - f surjektiv, d.h. jede Urne enthält mindestens einen Ball
 - f bijektiv, d.h. jede Urne enthält genau einen Ball

Bälle und Urnen unterscheidbar

Verteilen n Bälle auf m Urnen mittels f: $B \rightarrow U$.

- f beliebig:
 - mⁿ Möglichkeiten
- f injektiv (für n≤m):
 - □ mⁿ Möglichkeiten
- f surjektiv (für n>m):
 - □ Betrachten Urbildmengen $T_u := \{f^{-1}(u) \mid u \in U\}.$
 - Die T, sind nicht-leer und bilden m-Partition von B.
 - S_{n.m} Möglichkeiten für die Urbildmenge B.
 - □ Für jede feste m-Partition: m! Möglichkeiten zur Verteilung auf U.
 - □ Insgesamt: S_{n.m} * m!
- f bijektiv: (für n=m):
 - m! Möglichkeiten

Urnen unterscheidbar, Bälle nicht



Idee: Zähle wieviele Bälle in welcher Urne sind, z.B. 2+3+0.

- f beliebig:
 - Kodierung **|***| für 2 Bälle in 1. Urne, 3 in 2. Urne, 0 in 3. Urne
 - Anzahl Kodierungen bei n Sternen und m-1 Trennstrichen:

$$\binom{n+m-1}{n}$$

- f injektiv (für n≤m):
 - \square Wähle n Urnen aus, die genau einen Ball enthalten: $\binom{m}{n}$
- f surjektiv (für n>m):
 - □ Urne u_i enthält b_i viele Bälle, $b_i \ge 1$ mit: $b_1+b_2+...+b_m = n$
 - \Box $\binom{n-1}{m-1}$ Möglichkeiten
- f bijektiv: (für n=m):
 - □ 1 Möglichkeit

Bälle und Urnen nicht unterscheidbar



Idee: Anzahl der Bälle in Urnen ist entscheidend, Reihenfolge egal

- f beliebig:
 - k Urnen belegt: P_{n,k} Möglichkeiten
 - □ Insgesamt: $\sum_{k=1}^{m} P_{n,k}$
- f injektiv (für n≤m):
 - 1 Möglichkeit
- f surjektiv (für n≥m):
 - m Urnen belegt
 - P_{n,m} Möglichkeiten
- f bijektiv: (für n=m):
 - 1 Möglichkeit

Bälle unterscheidbar, Urnen nicht

Idee: Entspricht Partitionierung der Bälle.

- f beliebig:
 - k Urnen belegt: S_{n,k} Möglichkeiten
 - □ Insgesamt: $\sum_{k=1}^{m} S_{n,k}$
- f injektiv (für n≤m):
 - 1 Möglichkeit
- f surjektiv (für n≥m):
 - m-Partitionierung
 - □ S_{n,m} Möglichkeiten
- f bijektiv: (für n=m):
 - 1 Möglichkeit

Zusammenfassung

B =n		beliebig	injektiv	surjektiv	bijektiv
U =m			$n \leq m$	$n \ge m$	n=m
		m ⁿ	m <u>n</u>	S _{n,m} *m!	m!
		$\binom{n+m-1}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$	1
		$\sum_{k=1}^{m} S_{n,k}$	1	$S_{n,m}$	1
		$\sum_{k=1}^{m} P_{n,k}$	1	$P_{n,m}$	1

Erinnerung: Partielle Ordnung

Def:Eine Relation zwischen A und B ist eine Teilmenge R \subseteq A \times B. Falls A=B, spricht man von einer Relation auf A.

Eigenschaften von Relationen auf einer Menge:

- Reflexiv: $\forall a \in A$: $(a,a) \in R$
- Symmetrisch: $\forall a,b \in A$: $(a,b) \in R \Rightarrow (b,a) \in R$
- Antisymmetrisch: ∀ a,b ∈ A: (a,b) ∈ R ∧ (b,a) ∈ R ⇒ a=b
- Transitiv: \forall a,b,c \in A: (a,b) \in R \wedge (b,c) \in R \Rightarrow (a,c) \in R

Def: Eine partielle Ordnung ist eine reflexive, antisymmetrische und transitive Relation auf A.

- Schreibweise: a ≤ b statt (a,b) ∈ R
- Partiell geordnete Menge: (A, ≤), genannt poset.

Beispiele für Posets

■ (N, |)

Sei A eine beliebige Menge.

- lacksquare (\mathcal{M},\subseteq) , wobei
 - \square $\mathcal{M} \subseteq \mathcal{P}(A)$ (\mathcal{M} heisst Mengensystem)
- \blacksquare (N, \leq), (\mathbb{Z} , \leq), (\mathbb{R} , \leq), (\mathbb{Q} , \leq)

Reflexive transitive Hülle

Def:

- $(x,y) \in R^+ \Leftrightarrow \exists x=a_1,...,a_n=y \in A \text{ mit } (a_i, a_{i+1}) \in R \text{ für } 1 \leq i < n.$
 - R+ heisst transitive Hülle.
- $R^* = R^+ \cup \{ (x,x) \mid x \in A \}$
 - R* heisst reflexive transitive Hülle.

Bsp:

- R = {(S,T) ⊆ [n] | S ⊂ T}
 - □ R+=R
 - \square $R^* = \{(S,T) \subseteq [n] \mid S \subseteq T\}$
- $R = \{(a,b) \in \mathbb{N}^2 \mid a = 2b\}$
 - □ $R^+ = \{(a,b) \in \mathbb{N}^2 \mid a=2^k b, k \ge 1\}$
 - □ $R^* = \{(a,b) \in \mathbb{N}^2 \mid a=2^k b, k \ge 0\}$

Lineare Ordnung

Sei (S, ≤) partielle Ordnung.

Def.:

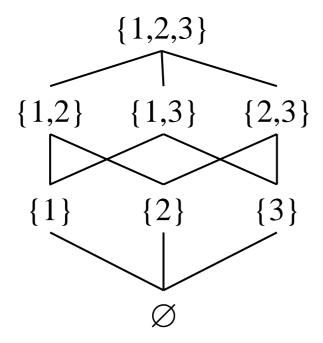
- x,y vergleichbar ⇔ x ≤ y oder y ≤ x
 x,y unvergleichbar sonst
- (S, ≤) vollständig/total ⇔ x,y vergleichbar ∀ x,y ∈ S
 S heisst dann lineare Ordnung.
- Sei S eine lineare Ordnung. (S, \leq_L) heisst lineare Erweiterung von (S, \leq) $\Leftrightarrow \forall x,y \in S: x \leq y \Rightarrow x \leq_L y$

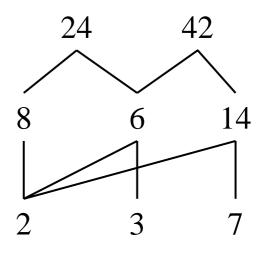
Bsp.:

- ({1},{1,3},{2}, ⊆)
 (1} und {1,3} sind vergleichbar, {1,3} und {2} nicht vergleichbar
- (N, ≤) ist lineare Ordnung
- (\mathbb{N}, \leq) ist lineare Erweiterung der nicht vollständigen Ordnung (\mathbb{N}, \mid)

Hasse-Diagramm

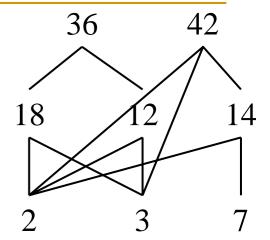
b steht über a ⇔ a ≤ b





Maxima und Suprema

Sei (S, \leq) poset.



Def:

- y \in S max. Element $\Leftrightarrow \forall x \in S$: $x \leq y$ oder x,y unvergleichbar
 - □ 36, 42 sind maximale Elemente
- $x \in S$ min. Element $\Leftrightarrow \forall y \in S$: $x \leq y$ oder x,y unvergleichbar
 - 2,3,7 sind minimale Elemente
- a obere Schranke von x,y ⇔ x ≤ a und y ≤ a.
- a Supremum von x,y ⇔ ∀ b, b obere Schranke von x,y: a ≤ b.
 - □ Schreibweise: a=x ∨ y.
 - $3 \lor 14 = 42, 7 \lor 14=14.$
 - 2 und 3 besitzen obere Schranken 18,12,42:
 Kein Supremum, da unvergleichbar.
 - 7 und 12 besitzen keine gemeinsame obere Schranke.
- a Infimum von x,y $\Leftrightarrow \forall$ b, b untere Schranke von x,y: b \leq a.
 - □ Schreibweise: a=x ∧ y.

Verband

Def: Eine partielle Ordnung (S, ≤) heisst Verband

 $\Leftrightarrow \forall x,y \in S: x \lor y \text{ und } x \land y \text{ existieren.}$

Eine Verband ist distributiv, falls für alle x, y, $z \in S$:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

In jedem Verband gilt:

Kommutativität:
$$x \lor y = y \lor x$$
,

$$x \wedge y = y \wedge x$$

$$(\mathsf{x} \vee \mathsf{y}) \vee \mathsf{z} = \mathsf{x} \vee (\mathsf{y} \vee \mathsf{z}),$$

$$(x \lor y) \lor z = x \lor (y \lor z), \quad (x \land y) \land z = x \land (y \land z)$$

$$X \vee X = X$$

$$x \wedge x = x$$

$$x \vee (x \wedge y) = x,$$

$$x \wedge (x \vee y) = x$$

Zusammenfassung

- Bälle in Urnen
 - Bälle unterscheidbar/nicht unterscheidbar
 - Urnen unterscheidbar/nicht unterscheidbar

- Partielle Ordnungen
 - Reflexive transitive Hülle
 - Lineare Ordnung
 - Hasse-Diagramm
 - Suprema und Infima