Binomische Formel mod p

Lemma Binomische Formel mod *p*

Seien $a, b \in \mathbb{Z}$ und $p \in \mathbb{P}$. Dann gilt

$$(a+b)^p \equiv a^p + b^p \bmod p.$$

Beweis:

Nach Binomischer Formel gilt

$$(a+b)^p = \sum_{i=0}^p \binom{p}{i} a^i b^{p-i} = a^p + b^p + \sum_{i=1}^{p-1} \binom{p}{i} a^i b^{p-i}.$$

- Wir wollen zeigen, dass $p \mid \binom{p}{i}$ für $1 \le i < p$. Daraus folgt $(a+p)^p \equiv a^p + b^p \mod p$.
- Es gilt $\binom{p}{i} \cdot i! = \frac{p!}{(p-i)!} = \prod_{j=0}^{i-1} (p-j)$.
- Wegen $i \ge 1$ teilt p die rechte Seite der Gleichung.
- Da p die rechte Seite teilt, muss p auch die linke Seite teilen.
- Wegen i < p und p prim gilt aber $p \nmid i!$. Damit folgt $p \mid \binom{p}{i}$.

Anmerkung: Die Abbildung $f : \mathbb{Z} \to \mathbb{Z}, x \mapsto x^p \mod p$ ist linear, d.h.

$$f(a+b) \equiv f(a) + f(b) \bmod p$$
. (f heißt Frobenius.)

Kleiner Satz von Fermat

Satz Kleiner Satz von Fermat

Sei $p \in \mathbb{P}$. Dann gilt

$$a^p \equiv a \mod p$$
 für alle $a \in \mathbb{Z}$.

Beweis:

- Wir führen zunächst eine Induktion für $a \ge 0$ durch.
- **IA** a = 0: $0^p \equiv 0 \mod p$.
- IS $a \rightarrow a + 1$: Nach vorigem Lemma gilt

$$(a+1)^p \equiv a^p + 1^p \equiv a + 1 \mod p$$
.

- Für a < 0 gilt $(-a)^p \equiv -a \mod p$ mit -a > 0.
- Für p = 2 ist $-a = -a + 2a \equiv a \mod 2$. Daraus folgt die Aussage.
- Für ungerades p folgt

$$-a \equiv (-a)^p = (-1)^p a^p = -a^p \mod p$$
.

■ Multiplikation mit (-1) liefert die gewünschte Identität.

Kleiner Satz von Fermat

Korollar Kleiner Satz von Fermat (Variante)

Sei $p \in \mathbb{P}$. Dann gilt

 $a^{p-1} \equiv 1 \mod p$ für alle $a \in \mathbb{Z}$ mit $p \nmid a$.

Beweis:

- Wir wissen $p \mid a^p a$ bzw. $p \mid a(a^p 1)$.
- Da p prim und $p \nmid a$ folgt $p \mid a^p 1$ und damit $a^{p-1} \equiv 1 \mod p$.

Anwendung:

- Bei Rechnung modulo p reduziere Exponenten modulo p-1.
- Modulo p = 5 gilt z.B.

$$2^{99} = 2^{3+96} = 2^3 \cdot (2^4)^{24} \equiv 2^3 \cdot 1^{24} = 2^3 \equiv 3 \mod 5.$$

Teiler und Vielfache

Lemma über Teiler und Vielfache

Für $a, b \in \mathbb{Z}$ und $n, m \in \mathbb{N}$ gilt:

- Falls $a \equiv b \mod n$ und $m \mid n$, dann ist $a \equiv b \mod m$.
- 2 Es gilt $a \equiv b \mod n$ gdw $ma \equiv mb \mod mn$.

Beweis:

- (1) Aus n|a-b und m|n folgt m|a-b.
- (2) \Rightarrow : Aus n|a-b folgt mn|m(a-b). \Leftarrow : Aus nm|m(a-b) folgt nmc=m(a-b) und damit nc=a-b.

Lösbarkeit linearer Gleichungen

Satz Lösbarkeit linearer Gleichungen

Seien $a, b \in \mathbb{Z}$ und $n \in \mathbb{N}$ mit $ax \equiv b \mod n$. Sei d = ggT(a, n).

- Falls eine Lösung $x \in \mathbb{Z}$ existiert, so gilt $d \mid b$.
- Sei $d \mid b$. Seien $y, z \in \mathbb{Z}$ mit ya + zn = ggT(a, n) = d. Ein $x \in \mathbb{Z}$ ist Lösung gdw

$$x \equiv y \frac{b}{d} \mod \frac{n}{d}$$
.

Beweis:

(1) Sei x eine Lösung mit $ax \equiv b \mod n$. Dann gilt ax = b + kn bzw.

$$b = ax - kn$$
.

- d = ggT(a, n) teilt beide Summanden rechts. Damit gilt $d \mid b$.
- (2) \Leftarrow : Sei $x \equiv y \frac{b}{d} \mod \frac{n}{d}$. Dann gilt

$$ax \equiv \frac{ay}{d} \cdot b \equiv \frac{d-zn}{d} \cdot b \equiv b - zn\frac{b}{d} \mod \frac{a}{d}n$$

Damit folgt $ax \equiv b \mod n$, d.h. x ist eine Lösung.

Lösbarkeit linearer Gleichungen

Beweis: (Fortsetzung)

 \Rightarrow : Sei x eine Lösung mit $ax \equiv b \mod n$. Dann gilt

$$yax \equiv (d - nz)x \equiv dx \equiv yb \bmod n$$
.

Aus der letzten Kongruenz folgt $x \equiv y \frac{b}{d} \mod \frac{n}{d}$.

Anmerkung:

Für ggT(a, n) = 1 existiert stets genau eine Lösung $x \equiv yb \mod n$.

Bsp:

- Berechne die Lösungsmenge von $4x \equiv 2 \mod 6$.
- Der Erw. Euklidische Algorithmus liefert $ggT(4,6) = -1 \cdot 4 + 6 = 2$.
- Damit gilt $x \equiv -\frac{2}{2} \equiv 2 \mod 3$. D.h. die Lösungsmenge ist $2 + 3\mathbb{Z}$.

Lösung von simultanen Kongruenzen

Ziel:

Bestimme alle Lösungen des Kongruenzensystems

$$\begin{array}{c|c} cx \equiv a \mod n \\ dx \equiv b \mod m \end{array}$$

- Falls $c \neq 1$ löse nach x auf (voriger Satz), ersetze n durch $\frac{n}{\operatorname{ggT}(c,n)}$.
- D.h. wir können oBdA annehmen, dass c = d = 1.

Satz Chinesischer Restsatz (CRT, Version 1)

Seien $a,b\in\mathbb{Z}$ und $n,m\in\mathbb{N}$. Sei $d=\operatorname{ggT}(n,m)=yn+zm,\ y,z\in\mathbb{Z}$.

- Falls das System $\begin{vmatrix} x \equiv a \mod n \\ x \equiv b \mod m \end{vmatrix}$ lösbar ist, gilt $a \equiv b \mod d$.
- Sei $a \equiv b \mod d$. Ein $x \in \mathbb{Z}$ ist eine Lösung gdw $x \equiv a yn\frac{a-b}{d} \mod \frac{nm}{d}$.

Beachte: Für teilerfremde *n*, *m* ist das System *immer* lösbar.

Chinesischer Restsatz

Beweis:

- (1) Sei x eine Lösung mit $x \equiv a \mod n$ und $x \equiv b \mod m$.
 - Da $d \mid n$ und $d \mid m$ folgt $\begin{vmatrix} x \equiv a \mod d \\ x \equiv b \mod d \end{vmatrix}$. Damit gilt $a \equiv b \mod d$.
- (2) \Leftarrow : Sei $x \equiv a yn \frac{a-b}{d} \mod \frac{nm}{d}$.
 - Wegen d|n und d|m können wir x modulo n und m betrachten.
 - Modulo n gilt $x \equiv a yn\frac{a-b}{d} \equiv a \mod n$ und modulo m gilt $x \equiv a yn\frac{a-b}{d} \equiv a (d-zm)\frac{a-b}{d} \equiv a (a-b) + zm\frac{a-b}{d} \equiv b \mod m$.
 - Damit ist x eine Lösung des simultanen Kongruenzensystems.
 - \Rightarrow : Seien x, x' Lösungen. Wir zeigen, dass dann $x \equiv x' \mod \frac{nm}{d}$.
 - Wegen $x \equiv a \equiv x' \mod n$ und $x \equiv b \equiv x' \mod m$ folgt $n \mid x x'$ und $m \mid x x'$. D.h. x x' ist gemeinsames Vielfaches von n und m.
 - kgV(n, m) ist *kleinstes* gemeinsames Vielfaches von n und m, d.h. $kgV(n, m) \mid x x'$.
 - Wegen $kgV(n, m) = \frac{nm}{ggT(n, m)} = \frac{nm}{d}$ folgt $x \equiv x' \mod \frac{nm}{d}$.

Chinesischer Restsatz

Bsp: Löse das folgende System simultaner Kongruenzen

$$\left|\begin{array}{c} x \equiv 3 \mod 6 \\ x \equiv 7 \mod 10 \end{array}\right|.$$

- Es gilt $d = ggT(6, 10) = -3 \cdot 6 + 2 \cdot 10 = 2$.
- Lösung existiert wegen $3 \equiv 7 \mod 2$ und besitzt die Form $x \equiv 3 + 3 \cdot 6 \cdot \frac{3-7}{2} \equiv 3 + (-6) \equiv 27 \mod 30$.
- D.h. alle Lösungen sind von der Gestalt 27 + 30Z.

Chinesischer Restsatz für mehr Gleichungen

Satz Chinesischer Restsatz

Die Lösungsmenge des Systems von simultanen Kongruenzen

$$a_i x \equiv b_i \mod n_i$$
 für $i = 1, \ldots, n$

kann berechnet werden.

Beweis:

- Löse zunächst alle linearen Gleichungen nach x auf. Dies liefert $x \equiv c_i \mod n'_i$ für $c_i \in \mathbb{Z}, n'_i \in \mathbb{N}$.
- Löse mittels Chinesischem Restsatz die Kongruenzen

$$\left|\begin{array}{cc} x \equiv c_1 & \bmod n'_1 \\ x \equiv c_2 & \bmod n'_2 \end{array}\right|.$$

- Die Lösungen kombinieren wir mit $x \equiv c_3 \mod n'_3$, usw.
- D.h. wir fassen jeweils zwei Kongruenzen zusammen, bis nur noch eine Kongruenz verbleibt.

Übung: Geben Sie eine explizite Formel für x falls n = 3.