Wiederholung

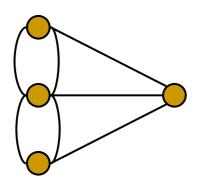
- Breitensuche BFS mit Startknoten s
 - Berechnet kürzeste s-v-Pfade
 - Berechnet Spannbaum
 - Zusammenhangskomponenten
 - □ Laufzeit O(n+m)
- Tiefensuche
 - Berechnet Spannbaum
 - □ Laufzeit O(n+m)
- Hamiltonsche Kreis
 - Berechenbar für sehr dichte Graphen

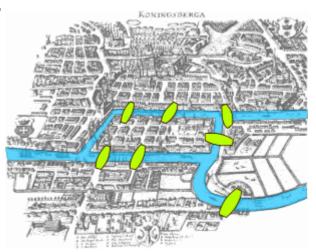
Königsberger Brückenproblem

Euler(1736): Kein Rundweg durch Königsberg mit

Alle Brücken über die Pregel werden genau einmal besucht.

Startpunkt ist identisch mit Endpunkt.





Def: Sei G=(V,E). Eine Eulertour in G ist ein Pfad, der jede Kante genau einmal besucht, und bei dem Anfangs- und Endknoten übereinstimmen.

Graphen mit Eulertour nennt man eulersch.

Kriterium für eulersche Graphen

Satz: Sei G=(V,E) zusammenhängend. G eulersch ⇔ deg(v) gerade für alle v ∈ V

- Sei $p=(v_0,v_1,...,v_k,v_0)$ eine Eulertour.
 - □ Innerer Knoten $v \neq v_0$ komme t, t>0, mal in der Eulertour vor.

$$\Rightarrow$$
 deg(v) = 2t

□ Knoten v_0 komme t+2, t ≥ 0, mal vor.

$$\Rightarrow$$
 deg(v_0) = 2t+2

G eulersch \Leftarrow deg(v) gerade

Algorithmus Eulertour

Eingabe: G(V,E) mit deg(v) gerade für alle $v \in V$

- 1. $W_0 \leftarrow (v)$ für beliebiges v
- $i \leftarrow 1$
- while (nicht alle Kanten besucht)
 - Wähle Knoten v_i in $W_{i-1}=(v_0,...,v_k=v_0)$, der zu nicht besuchter Kante $\{v_i,u\}$ inzident ist.
 - 2. Konstruiere Weg W_i '= $(v_i, u, ..., v_i)$.
 - 3. $W_i \leftarrow (v_0, ..., v_i, u, ..., v_i, ..., v_k = v_0)$, d.h. verschmelze W_{i-1} und W_i .

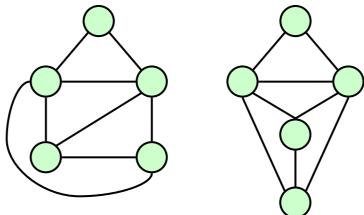
Ausgabe: Eulertour Wi

Korrektheit:

- Alle Kanten werden besucht, d.h. Algorithmus terminiert.
- Da G zusammenhängend ist, werden alle Knoten besucht.
- z.z.: Konstruktion von W_i in Schritt 3.2 ist möglich:
 - Da jeder innere Knoten w in W_i' geraden Grad hat, kann w wieder verlassen werden.
 - Weg muss schliesslich wieder in v_i enden.

Planare Graphen

Def: Ein Graph G=(V,E) heisst planar falls er in den \mathbb{R}^2 einbettbar ist, d.h. falls seine Kanten so dargestellt werden können, dass sie sich paarweise nicht schneiden.

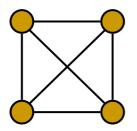


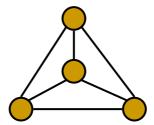
- Kanten: (Jordan-)Kurven
 - Strecken statt Kurven liefert dieselbe Klasse von Graphen.
 (Fary's Theorem)

Planare Graphen

Ebenes und nicht-ebenes Diagramm des K₄.

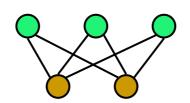
□ Ebenes Diagramm unterteilt in 4 Gebiete $R = \{r_1, ..., r_4\}$.

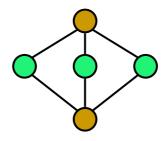




Bipartite Graphen K_{n1,n2} □ n₁ braune Knoten, n₂ grüne Knoten

- = e = {u,v} \in E \Leftrightarrow u,v haben verschiedene Farben





| R | ist topologische Invariante.

Satz (Eulersche Polyederformel): Sei G=(V,E) zusammenhängend und planar. Sei f die Anzahl der Flächen eines ebenen Diagramms von G. Dann gilt:

f = m-n+2.

Beweis per Induktion über m

IV: m=n-1, für m<n-1 ist G nicht zusammenhängend.

- G ist Baum, d.h. kreisfrei
- □ G hat f = 1 = (n-1)-n+2 Flächen

IS: m-1 \rightarrow m. Sei |E| = m.

- □ G muss Kreis C enthalten. Sei e∈ C.
- □ G'=(V, E\{e}) hat m-1 Kanten und daher f'=m-n+1 Flächen.
- In G werden zwei Flächen von G' durch e getrennt.
- □ G hat f'+1=m-n+2 Flächen.

Flächen bei nicht-zusammenhängenden G

Korollar: Sei G=(V,E) mit k ZHK. Dann gilt: f = m-n+k+1.

- **ZHK:** $G_1 = (V_1, E_1), ..., G_k = (V_k, E_k)$
- Für jedes G_i mit |V|=n_i, |E|=m_i gilt:

 - Außenfläche wird k-mal gezählt

$$\Rightarrow f = \sum_{i} m_{i} - \sum_{i} n_{i} + 2k - (k-1)$$
$$= m-n+k+1$$

Kriterium für nicht-planare Graphen

Satz: Für jeden planaren Graphen G=(V,E) gilt: $m \le 3(n-2)$

- Sei $E = \{e_1, ..., e_m\}$ und $R = \{r_1, ..., r_f\}$.
- Relation A={(e,r) ∈ E × R | e ist (im Rand) von r}
- Doppeltes Abzählen:
 - □ Zeilensumme: Jedes e begrenzt höchstens zwei Gebiete
 ⇒ |A| < 2m
 - □ Spaltensumme: Jedes r wird von mindestens drei Kanten begrenzt. $\Rightarrow |A| \ge 3f$
- Insgesamt:

$$\begin{array}{l} 3f \leq 2m \\ \Leftrightarrow 3(m\text{-}n\text{+}2) \leq 2m2 \\ \Leftrightarrow \qquad m \leq 3(n\text{-}2) \end{array}$$

Korollar: Für planare G=(V,E) ohne Kreise mit Länge 3 gilt: $m \le 2(n-2)$

Beweis: $4(m-n+2) \le 2m \Leftrightarrow m \le 2(n-2)$

Nicht-planare Graphen

Korollar: K_5 und $K_{3,3}$ sind nicht planar.

- K_n ist für $n \ge 5$ nicht planar
 - $\ \square$ K_n hat $\frac{1}{2}$ n(n-1) \geq 3(n-2) Kanten.
- K_{3,3} ist nicht planar.
 - Bipartite Graphen besitzen keine Kreise der Länge 3.
 - □ Annahme: Sei C= (c_1, c_2, c_3) Kreis in K_{n_1, n_2} .
 - ObdA sei c₁ grün gefärbt.
 - Dann ist c₂ braun und c₃ grün.
 - Damit können c₁ und c₃ nicht verbunden sein.

Satz von Kuratowski

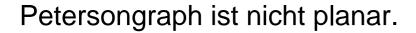
Sei G=(V,E) und $e=\{u,v\} \in E$

- Einfügen von Knoten v' in Kante e:
- H=(V',E') ist Unterteilung von G:
 - H kann aus G durch Einfügen von Knoten konstruiert werden.

Satz(Kuratowski):

G planar \Leftrightarrow G enthält keine Unterteilung von K_5 oder $K_{3,3}$.

(ohne Beweis)



Grad eines Knoten in planaren Graphen

Satz: Sei G planar. Dann besitzt G einen Knoten v mit $deg(v) \le 5$.

Ann: $deg(v) \geq 6$.

 \Rightarrow 2m= \sum_{v} deg(v) \geq 6n

 \Rightarrow m \geq 3n (Widersprich: m<3(n-2))

Zusammenfassung

- Königsberger Brückenproblem
 - Eulertour
 - besucht alle Kanten
 - Anfangs- und Endknoten sind gleich
 - □ G eulersch \Leftrightarrow deg(v)=0 mod 2 für alle v \in V

Planare Graphen

- Flächenanzahl invariant: f = m-n+2
- □ Dünn besetzte Graphen: m < 3(n-2)</p>
- Jeder nicht planare enthält Unterteilung von K₅ oder K_{3,3}
- □ Enthält Knoten v mit $deg(v) \le 5$