12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse \mathcal{NP}

Polynomielle Verifizierer und NP

Definition Polynomieller Verifizierer

Sei $L\subseteq \Sigma^*$ eine Sprache. Eine DTM V heißt V heißt V für alle Eingaben $w\in \Sigma^*$ hält und folgendes gilt:

$$w \in L \Leftrightarrow \exists c \in \Sigma^* : V \text{ akzeptiert Eingabe } (w, c).$$

Das Wort c nennt man einen Zeugen oder Zertifikat für w.

V heißt polynomieller Verifizierer für L, falls für alle $w \in \Sigma^*$ in Laufzeit polynomiell in |w| hält und folgendes gilt:

$$w \in L \Leftrightarrow \exists c \in \Sigma^*, |c| \leqslant |w|^k, k \in \mathbb{N} : V \text{ akzeptiert Eingabe } (w, c).$$

L ist polynomiell verifizierbar $\Leftrightarrow \exists$ polynomieller Verifizierer für L.

Definition Klasse \mathcal{NP}

$$\mathcal{NP} := \{L \mid L \text{ ist polynomial verifizierbar.}\}$$

Polynomieller Verifizierer für RUCKSACK

Satz

RUCKSACK $\in \mathcal{NP}$.

Beweis:

Algorithmus Polynomieller Verifizierer für RUCKSACK

Eingabe: (W, P, B, k, c) mit Zeuge $c = \subseteq [n]$

- Falls $\sum_{i \in c} w_i \leqslant B$ und $\sum_{i \in c} p_i \geqslant k$, akzeptiere.
- 2 Lehne ab.

Laufzeit:

- Eingabegrößen: $\log w_i$, $\log p_i$, $\log B$, $\log k$, n
- Laufzeit: $\mathcal{O}(n \cdot \log(\max_i \{w_i, p_i, B, k\}))$ auf RAM.
- D.h. die Laufzeit ist polynomiell in den Eingabegrößen.

Optimaler Wert einer Lösung mittels Entscheidung

RUCKSACK_{wert}

- Gegeben: $W = \{w_1, ..., w_n\} P = \{p_1, ..., p_n\}$ und B.
- Gesucht: $\max_{l \subseteq [n]} \{ \sum_{i \in I} p_i \mid \sum_{i \in I} w_i \leqslant B \}$

Sei M eine DTM, die RUCKSACK in Laufzeit T(M) entscheide.

Algorithmus OPTIMUM

Eingabe: W, P, B

 $0 \ell \leftarrow 0, r \leftarrow \sum_{i=1}^{n} p_i$

② WHILE $(\ell \neq r)$

• Falls M bei Eingabe $(W, P, B, \lceil \frac{\ell+r}{2} \rceil)$ akzeptiert, $\ell \leftarrow \lceil \frac{\ell+r}{2} \rceil$.

2 Sonst $r \leftarrow \lceil \frac{\ell+r}{2} \rceil - 1$.

Ausgabe: ℓ

- Korrektheit: Binäre Suche nach Optimum auf Intervall $[0, \sum_{i=1}^{n} p_i]$.
- Laufzeit: $\mathcal{O}(\log(\sum_{i=1}^n p_i)) \cdot T(M)$.
- Insbesondere: Laufzeit ist polynomiell, falls T(M) polynomiell ist.

Optimale Lösung mittels optimalem Wert

Algorithmus Optimale Lösung

Eingabe: W, P, B

- **○** opt \leftarrow OPTIMUM(W, P, B), $I \leftarrow \emptyset$
- 2 For $i \leftarrow 1$ to n
 - Falls (OPTIMUM($W \setminus \{w_i\}, P \setminus \{p_i\}, B$) = opt, setze $W \leftarrow W \setminus \{w_i\}, P \leftarrow P \setminus \{p_i\}$.
 - $\textbf{2} \ \mathsf{Sonst} \ I \leftarrow I \cup \{i\}.$

Ausgabe: I

Korrektheit:

- Invariante vor *i*-tem Durchlauf: $\exists J \subseteq \{i, ..., n\}: I \cup J$ ist optimal.
- *i* wird nur dann in *l* aufgenommen, falls *l* zu optimaler Teilmenge erweitert werden kann.
- Laufzeit: $\mathcal{O}(n \cdot T(\mathsf{OPTIMUM})) = \mathcal{O}(n \cdot \log(\sum_{i=1}^n p_i) \cdot T(M))$.
- D.h. Laufzeit ist polynomiell, falls T(M) polynomiell ist.

Sprache Zusammengesetzt

ZUSAMMENGESETZT:= $\{N \in \mathbb{N} \mid N = ab \text{ mit } a, b \in \mathbb{N}, a, b \geqslant 2\}$

Satz

Zusammengesetzt $\in \mathcal{NP}$.

Beweis:

Algorithmus Polynomieller Verifizierer für ZUSAMMENGESETZT

Eingabe: (N, c) mit $c = (p, q) \in \{2, ..., N - 1\}^2$

1 Berechne $p \cdot q$. Falls $p \cdot q = N$, akzeptiere. Sonst lehne ab.

Laufzeit:

- Eingabelänge: $|N| = \Theta(\log N)$
- Laufzeit: $\mathcal{O}(\log^2 N)$, d.h. polynomiell in der Eingabelänge.

$\mathcal P$ versus $\mathcal N\mathcal P$

Satz

 $\mathcal{P} \subset \mathcal{NP}$.

- $L \in \mathcal{P} \implies \exists DTM M$, die L in polynomieller Laufzeit entscheidet.
 - ⇒ \exists DTM M, die stets hält und genau die Eingaben $w \in L$ in Laufzeit polynomiell in |w| akzeptiert.
 - ⇒ ∃ DTM V, die stets hält und genau die Eingaben (w, c) mit $w \in L$, $c = \epsilon$ in Laufzeit polynomiell in |w| akzeptiert. Dabei ignoriert V die Eingabe c und verwendet M auf w.
 - $\Rightarrow L \in \mathcal{NP}$.
- Großes offenes Problem: Gilt $\mathcal{P} = \mathcal{NP}$ oder $\mathcal{P} \subset \mathcal{NP}$?

Nichtdeterministische Turingmaschinen

Wir bezeichnen mit $\mathcal{P}(S)$ die Potenzmenge einer Menge S.

Definition Nichtderministische Turingmaschine

Eine *nicht-deterministische Turingmaschine (NTM)* ist ein Tupel $(Q, \Sigma, \Gamma, \delta, s, \sqcup, E)$ wobei

- $Q, \Sigma, \Gamma, s, \sqcup, E$ sind wie bei DTM definiert.
- δ ist nun eine Relation, nicht eine Funktion, i.e.

$$\delta \subseteq (Q \setminus \{q_a, q_r\} \times \Gamma) \times (Q \times \Gamma \times \{L, N, R\})$$

Falls für jeden (q, a) es nur ein Element $((q, a), (q' \times a' \times e))$ mit $e \in \{L, N, R\}$ in δ gibt, dann ist δ eine Funktion und die TM ist deterministisch.

- Bsp: δ enthält $(q, a) \times (q_1, a_1, L)$, und $(q, a) \times (q_2, a_2, R)$.
- NTM besitzt 2 Wahlmöglichkeiten für den Zustandsübergang.
- Beschränken uns oBdA auf NTMs mit ≤ 2 Wahlmöglichkeiten.

Berechnungsbaum

- Seien die Konfigurationen einer NTM Knoten in einem Berechnungsbaum.
 - Die Startkonfiguration bildet den Wurzelknoten.
 - Mögliche Nachfolgekonfigurationen bilden Kinderknoten.
- Pfade heißen Berechnungspfade der NTM.
- Betrachten nur NTMs mit Berechnungspfaden endlicher Länge.
- Ein Berechnungpfad heißt akzeptierend, falls er in q_a endet.

Definition Akzeptierte Sprache einer NTM

Sei N eine NTM.

- N akzeptiert Eingabe $w \Leftrightarrow \exists$ akzeptierenden Berechnungspfad im Berechnungsbaum von N bei Eingabe w.
- Die von N akzeptierte Sprache L(N) ist definiert als L(N) = {w ∈ Σ* | N akzeptiert die Eingabe w.}.

Die Laufzeit einer NTM

Definition Laufzeit einer NTM

Sei N eine DTM mit Eingabe w.

- $T_N(w) :=$ maximale Anzahl Rechenschritte von N auf w, d.h. $T_N(w)$ ist die Länge eines längsten Berechnungspfades.
- $T_N : \mathbb{N} \to \mathbb{N}, T_N(n) := \max\{T_N(w) \mid w \in \Sigma^{\leq n}\}$ heißt *Laufzeit* oder Zeitkomplexität von *N*.
- Wir definieren die Klasse NTIME für NTMs analog zur Klasse DTIME für DTMs.

Definition NTIME

Sei $t : \mathbb{N} \to \mathbb{N}$ eine monoton wachsende Funktion.

NTIME $(t(n)) := \{L \mid L \text{ wird von NTM in Laufzeit } \mathcal{O}(t(n)) \text{ entschieden.} \}$

NTM, die RUCKSACK entscheidet

Algorithmus NTM für RUCKSACK

Eingabe: W, P, B, k

- Erzeuge nichtdeterministisch einen Zeugen $I \subseteq [n]$.
- 2 Falls $\sum_{i \in I} w_i \le B$ und $\sum_{i \in I} p_i \ge k$, akzeptiere.
- Sonst lehne ab.
 - D.h. NTM erzeugt sich im Gegensatz zum Verifizierer ihren Zeugen / selbst.
 - Laufzeit: Schritt 1: $\mathcal{O}(n)$, Schritt 2: $\mathcal{O}(n \cdot \log(\max_i\{w_i, p_i\}))$.
 - D.h. die Laufzeit ist polynomiell in der Eingabelänge.

\mathcal{NP} mittels NTMs

Satz

 \mathcal{NP} ist die Klasse aller Sprachen, die von einer NTM in polynomieller Laufzeit entschieden wird, d.h.

$$\mathcal{NP} = \bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k).$$

Zeigen:

∃ polynomieller Verifizierer für *L*

 $\Leftrightarrow \exists NTM N$, die L in polynomieller Laufzeit entscheidet.

Verifizierer ⇒ NTM

" \Rightarrow ": Sei V ein Verifizierer für L mit Laufzeit $\mathcal{O}(n^k)$ für ein festes k.

Algorithmus NTM N für L

Eingabe: w mit |w| = n.

- Erzeuge nicht-deterministisch einen Zeugen c mit $|c| = \mathcal{O}(n^k)$.
- 2 Simuliere V mit Eingabe (w, c).
- 3 Falls V akzeptiert, akzeptiere. Sonst lehne ab.
 - Korrektheit:

```
w \in L \Leftrightarrow \exists c \text{ mit } |c| = \mathcal{O}(n^k) : V \text{ akzeptiert } (w, c).

\Leftrightarrow N \text{ akzeptiert die Eingabe } w \text{ in Laufzeit } \mathcal{O}(n^k).
```

• Damit entscheidet N die Sprache L in polynomieller Laufzeit.

NTM ⇒ Verifizierer

" \Leftarrow : Sei N eine NTM, die L in Laufzeit $\mathcal{O}(n^k)$ entscheidet.

Algorithmus Verifizierer

Eingabe: w, c

- 2 Simuliere N auf Eingabe w auf dem Berechnungspfad c.
- Falls N akzeptiert, akzeptiere. Sonst lehne ab.

Korrektheit:

 $w \in L \Leftrightarrow \exists$ akzeptierender Berechnungspfad c von N für $w \Leftrightarrow V$ akzeptiert (w, c).

Laufzeit:

- Längster Berechnungspfad von N besitzt Länge $\mathcal{O}(n^k)$.
- D.h. die Gesamtlaufzeit von V ist ebenfalls $\mathcal{O}(n^k)$.

Boolesche Formeln

Definition Boolesche Formel

- Eine Boolesche Variable x_i kann Werte aus $\{0,1\}$ annehmen, wobei $0 \cong$ falsch und $1 \cong$ wahr.
- Jede Boolesche Variable x_i ist eine Boolesche Formel.
- Sind ϕ, ψ Boolesche Formeln, so auch $\neg \phi, \phi \land \psi, \phi \lor \psi$.
- Operatoren geordnet nach absteigender Priorität: ¬, ∧, ∨.
- ϕ ist erfüllbar $\Leftrightarrow \exists$ Belegung der Variablen in ϕ mit $\phi = 1$.

Bsp:

- $\phi = \neg(x_1 \lor x_2) \land x_3$ ist erfüllbar mit $(x_1, x_2, x_3) = (0, 0, 1)$.
- $\psi = x_1 \wedge \neg x_1$ ist eine nicht-erfüllbare Boolesche Formel.

Satisfiability SAT

Definition SAT

SAT := $\{\phi \mid \phi \text{ ist eine erfüllbare Boolesche Formel.}\}$

Codierung von ϕ :

- Codieren Variable x_i durch bin(i).
- Codieren ϕ über dem Alphabet $\{0, 1, (,), \neg, \wedge, \vee\}$.

SAT ist polynomiell verifizierbar.

Satz

SAT $\in \mathcal{NP}$.

Beweis

Algorithmus Polynomieller Verifizierer

EINGABE: $(\phi(x_1,...,x_n), \mathbf{c})$, wobei $\mathbf{c} = (c_1,...,c_n) \in \{0,1\}^n$.

• Falls $\phi(c_1, \ldots, c_n) = 1$, akzeptiere. Sonst lehne ab.

Korrektheit:

• $\phi(x_1,\ldots,x_n) \in SAT \Leftrightarrow \exists Belegung \mathbf{c} \in \{0,1\}^n : \phi(\mathbf{c}) = 1$

Laufzeit:

- Belegung von ϕ mit \mathbf{c} : $\mathcal{O}(|\phi|)$ auf RAM.
- Auswertung von ϕ auf **c**: $\mathcal{O}(|\phi|^2)$ auf RAM.

Simulation von NTMs durch DTMs

Satz Simulation von NTM durch DTM

Sei N eine NTM, die die Sprache L in Laufzeit t(n) entscheidet. Dann gibt es eine DTM M, die L in Zeit $\mathcal{O}(2^{t(n)})$ entscheidet.

Sei B(w) = (V, E) der Berechnungsbaum von N bei Eingabe w.

Algorithmus DTM M für L

- Führe Tiefensuche auf B(w) aus.
- 2 Falls akzeptierender Berechnungspfad gefunden wird, akzeptiere.
- Sonst lehne ab.
 - Tiefensuche auf B(w) benötigt Laufzeit $\mathcal{O}(|V| + |E|) = \mathcal{O}(|V|)$.
 - Berechnungspfade in B(w) besitzen höchstens Länge t(n).
 - D.h. B(w) besitzt höchstens $2^{t(n)}$ Blätter.
 - Damit besitzt B(w) höchstens $|V| \le 2 \cdot 2^{t(n)} 1$ viele Knoten.
 - D.h. die Gesamtlaufzeit ist $\mathcal{O}(2^{t(n)})$.

Polynomielle Reduktion

Definition Polynomiell berechenbare Funktion

Sei Σ ein Alphabet und $f: \Sigma^* \to \Sigma^*$. Die Funktion f heißt polynomiell berechenbar gdw. eine DTM M existiert, die für jede Eingabe w in Zeit polynomiell in |w| den Wert f(w) berechnet.

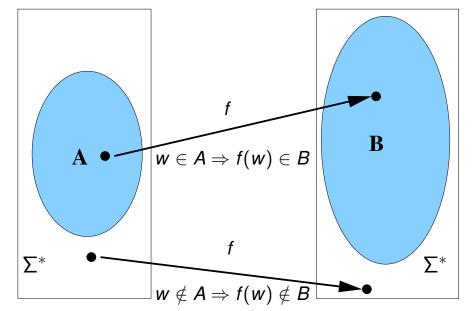
Definition Polynomielle Reduktion

Seien $A, B \subseteq \Sigma^*$ Sprachen. A heißt polynomiell reduzierbar auf B, falls eine polynomiell berechenbare Funktion $f: \Sigma^* \to \Sigma^*$ existiert mit

$$w \in A \Leftrightarrow f(w) \in B$$
 für alle $w \in \Sigma^*$.

Wir schreiben $A \leq_p B$ und bezeichen f als polynomielle Reduktion.

Graphische Darstellung $w \in A \Leftrightarrow f(w) \in B$



A ist nicht schwerer als B.

Satz \mathcal{P} -Reduktionssatz

Sei $A \leq_p B$ und $B \in \mathcal{P}$. Dann gilt $A \in \mathcal{P}$.

- Wegen $B \in \mathcal{P}$ existiert DTM M_B , die B in polyn. Zeit entscheidet.
- Wegen $A \leq_p B$ existiert DTM M_f , die f in polyn. Zeit berechnet.

Algorithmus DTM M_A für A

Eingabe: w

- **1** Berechne f(w) mittels M_f auf Eingabe w.
- ② Falls M_B auf Eingabe f(w) akzeptiert, akzeptiere. Sonst lehne ab.

Korrektheit:

• M_A akzeptiert $w \Leftrightarrow M_B$ akzeptiert $f(w) \Leftrightarrow f(w) \in B \Leftrightarrow w \in A$.

Laufzeit:

• $T(M_A) = \mathcal{O}(T(M_f) + T(M_B))$, d.h. polynomiell in |w|.

Transitivität polynomieller Reduktionen

Satz Transitivität von ≤_p

Seien $A, B, C \subseteq \Sigma^*$ Sprachen mit $A \leqslant_p B$ und $B \leqslant_p C$. Dann gilt $A \leqslant_p C$.

• Sei *f* die polynomielle Reduktion von *A* auf *B*, d.h.

$$w \in A \Leftrightarrow f(w) \in B$$
 für alle $w \in \Sigma^*$.

• Sei *g* die polynomielle Reduktion von *B* auf *C*, d.h.

$$v \in B \Leftrightarrow g(v) \in C$$
 für alle $v \in \Sigma^*$.

- Dann gilt insbesondere $w \in A \Leftrightarrow f(w) \in B \Leftrightarrow g(f(w)) \in C$.
- Damit ist die Komposition g ∘ f eine Reduktion von A auf C.
- g ∘ f kann in polynomieller Zeit berechnet werden durch Hintereinanderschaltung der polynomiellen DTMs M_f und M_g für f und g:
 - ▶ $k, k', \tilde{k} \in \mathbb{N}$ existieren, so dass $T(M_f(w)) = \mathcal{O}(|w|^k)$, $T(M_g(v)) = \mathcal{O}(|v|^{k'})$ und $|f(w)| = \mathcal{O}(|w|^{\tilde{k}})$ für alle w, v.
 - Also für v = f(w) ist es $T(M_g \circ M_f(w)) = \mathcal{O}(|w|^k) + \mathcal{O}((|w|^{\tilde{k}})^{k'})$, d.h. polynomiell.