13. Woche: NP-VollständigkeitSatz von Cook-LevinAnwendungen in der Kryptographie

\mathcal{NP} -Vollständigkeit

Definition \mathcal{NP} -vollständig

Sei L eine Sprache. Wir bezeichnen L als \mathcal{NP} -vollständig, falls

- $\mathbf{0}$ $\mathbf{L} \in \mathcal{NP}$
- **2** Für **jede** Sprache $A \in \mathcal{NP}$ gilt: $A \leq_{p} L$.

Separation oder Gleichheit von \mathcal{P} und \mathcal{NP} , I

Satz

Sei L eine \mathcal{NP} -vollständige Sprache und $L \in \mathcal{P}$. Dann gilt $\mathcal{P} = \mathcal{NP}$.

Beweis:

- Wir zeigen für ein beliebiges $A \in \mathcal{NP}$, dass $A \in \mathcal{P}$.
- Da $A \in \mathcal{NP}$ und $L \mathcal{NP}$ -vollständig ist, gilt $A \leq_p L$.
- Nach Voraussetzung gilt $L \in \mathcal{P}$.
- \mathcal{P} -Reduktionssatz: Aus $A \leq_{p} L$, $L \in \mathcal{P}$ folgt $A \in \mathcal{P}$.
- Da dies für ein beliebiges $A \in \mathcal{NP}$ gilt, folgt $\mathcal{NP} \subseteq \mathcal{P}$.
- Wegen $\mathcal{P} \subseteq \mathcal{NP}$ gilt schließlich $\mathcal{P} = \mathcal{NP}$.

Separation oder Gleichheit von \mathcal{P} und \mathcal{NP} , II

Die \mathcal{NP} -vollständige Probleme bilden die Menge der schwierigsten Probleme in \mathcal{NP} .

Der Satz von Richard Ladner (1975)

Falls $\mathcal{P} \neq \mathcal{NP}$, dann existieren Probleme in \mathcal{NP} , die weder \mathcal{NP} -vollständig sind, noch in \mathcal{P} liegen – sie bilden die Klasse \mathcal{NPI} (Nicht-deterministisch Polynomiell, Intermediate).

Für den Beweis des Satzes wurde von Ladner ein künstliches Problem generiert, welches keinerlei praktische Relevanz besitzt.

Es ist nicht bekannt, ob auch "natürliche" Probleme in \mathcal{NPI} liegen. Es wird jedoch vermutet, dass dies z.B. für die Primfaktorzerlegung gilt.

Ladner, Richard: On the Structure of Polynomial Time Reducibility. Journal of the ACM (JACM) 22 (1): 155–171, 1975.

\mathcal{NP} Vollständigkeits-Beweise

Satz \mathcal{NP} -Reduktionssatz

Seien B, L Sprachen. Sei $L \mathcal{NP}$ -vollständig, $B \in \mathcal{NP}$ und $L \leq_p B$. Dann ist auch $B \mathcal{NP}$ -vollständig.

Beweis: Müssen zeigen, dass $A \leq_p B$ für alle $A \in \mathcal{NP}$.

- Da $L \mathcal{NP}$ -vollständig ist, gilt $A \leq_p L$ für beliebiges $A \in \mathcal{NP}$.
- Ferner gilt nach Voraussetzung $L \leq_p B$.
- Aus der Transitivität von \leq_p folgt: $A \leq_p B$.
- Damit ist B ebenfalls \mathcal{NP} -vollständig.

Problem: Wir benötigen ein *erstes* \mathcal{NP} -vollständiges Problem.

Satz von Cook-Levin (1971)

Satz von Cook-Levin

SAT ist \mathcal{NP} -vollständig.

Beweis: Müssen zeigen

- **1** SAT $\in \mathcal{NP}$ (bereits gezeigt)
- ② Für alle $L \in \mathcal{NP}$ existiert polynomiell berechenbare Reduktion f:

$$w \in L \Leftrightarrow f(w) \in \mathsf{SAT}.$$

Beweisidee: Sei $L \in \mathcal{NP}$ beliebig.

• \exists NTM N mit polynomieller Laufzeit n^k mit

$$w \in L \Leftrightarrow N$$
 akzeptiert w .

- Konstruieren aus (N, w) eine Formel ϕ mit
 - **1** N akzeptiert $w \Leftrightarrow f(w) = \phi \in SAT$
 - 2 f ist in Zeit polynomiell in |w| = n berechenbar.
- Betrachten dazu eine $(n^k + 1) \times (n^k + 1)$ Berechnungstabelle von N.

Berechnungstabelle T von N auf w

q_0	\triangleright	<i>W</i> ₁	 Wn	Ц		Ц
\triangleright	q_i	<i>W</i> ₁	 W _n	Ш		Ш
		:			:	

- Tabelle T entspricht einem Pfad im Berechnungsbaum.
- Erste Zeile enthält die Startkonfiguration.
- (i + 1)-te Zeile ist mögliche Nachfolgekonfiguration der i-ten Zeile: wenn die NTM doch nicht-deterministisch ist, dann gibt es mehrere Möglichkeiten, die Tabelle zu belegen.
- In Laufzeit n^k können höchstens n^k Zellen besucht werden.
- T akzeptierend $\Leftrightarrow T$ enthält eine akzeptierende Konfiguration.
- Konstruieren ϕ derart, dass ϕ erfüllbar ist gdw. eine mögliche Belegung von T akzeptierend ist.

Struktur der Formel für ϕ

- Sei T(i,j) der Eintrag in der i-ten Zeile und j-ten Spalte von T.
- $T(i,j) \in Q \cup \Gamma$ für alle i,j.
- Definieren ϕ über den Booleschen Variablen $x_{i,j,\sigma}$ mit

$$x_{i,j,\sigma} = 1 \Leftrightarrow T(i,j) = \sigma$$
 für $\sigma \in Q \cup \Gamma$.

Formel für ϕ : $\phi = \phi_{Start} \wedge \phi_{accept} \wedge \phi_{Eintrag} \wedge \phi_{move}$ mit

 ϕ_{Start} : T beginnt mit Startkonfiguration.

 ϕ_{accept} : T muss Eintrag q_a besitzen.

 $φ_{Eintrag}$: T enthält Einträge aus $Q \cup \Gamma$.

 ϕ_{move} : T besitzt gültige Nachfolgekonfigurationen.

Definition von ϕ_{Start} , ϕ_{accept} und $\phi_{Eintrag}$

 ϕ_{Start} : Codieren die Startkonfiguration $q_0 \triangleright w_1 \dots w_n$

$$X_{1,1,q_0} \land X_{1,2,\triangleright} \land X_{1,3,w_1} \land \ldots \land X_{1,n+2,w_n} \land X_{1,n+3,\sqcup} \land \ldots \land X_{1,n^k+1,\sqcup}$$

 ϕ_{accept} : ϕ ist erfüllend gdw T eine erfüllende Konfiguration enthält

$$\phi_{accept} = \bigvee_{1 \leqslant i,j \leqslant n^k + 1} x_{i,j,q_a}$$

φ_{Eintrag}: T(i,j) ∈ Q ∪ Γ, d.h. es gibt ein σ ∈ Q ∪ Γ mit $x_{i,j,σ} = 1$.

• T(i,j) enthält mindestens einen Eintrag $\sigma \in Q \cup \Gamma$:

$$\phi_{\geqslant 1} = \bigvee_{\sigma \in Q \cup \Gamma} \mathsf{X}_{i,j,\sigma}.$$

• T(i,j) enthält höchstens einen Eintrag $\sigma \in Q \cup \Gamma$:

$$\phi_{\leqslant 1} = \bigwedge_{\sigma,\tau \in Q \cup \Gamma, \sigma \neq \tau} \neg (x_{i,j,\sigma} \land x_{i,j,\tau}).$$

• Liefert insgesamt $\phi_{Eintrag} = \bigwedge_{1 \leq i, j \leq n^k + 1} (\phi_{\geq 1} \wedge \phi_{\leq 1})$.

Definition von ϕ_{move}

Ziel: Zeile i + 1 muss mögliche Nachfolgekonfiguration von Zeile i sein.

- Definieren Fenster F der Größe 2 x 3.
- (i,j)-Fenster besitzt Einträge (i,j-1),(i,j),(i,j+1) und (i+1,j-1),(i+1,j),(i+1,j+1).
- Tabelle *T* besitzt (i, j)-Fenster für $i = 1, ..., n^k, j = 2, ..., n^k$.
- Fenster F heißt legal gwd F's Einträge δ *nicht widersprechen*.

Beispiele für legale Fenster

Sei δ wie folgt definiert

$$\delta := \{ ((q_1, a), (q_1, b, R)), ((q_1, b), (q_2, c, L), (q_2, a, R)) \\ ((q_1, b), (q_2, c, L), (q_2, a, R)) \} \\ \subseteq (Q \setminus \{q_a, q_r\} \times \Gamma) \times (Q \times \Gamma \times \{L, N, R\})$$

а	q_1	b
q_2	а	С

$$\begin{array}{c|cccc} a & q_1 & b \\ \hline a & a & q_2 \\ \end{array}$$

legal

legal

b

nicht legal

≀ ∣ a ∣ legal

 $a \mid a \mid q_1$

а

legal

а	q_1	b
q_2	b	q_2

$$\begin{array}{c|cccc} a & b & a \\ \hline a & b & q_2 \end{array}$$

nicht legal

legal

legal

Korrektheit der Konstruktion

Lemma Korrektheit Berechnungstabelle

Sei *T* eine Tabelle mit den folgenden Eigenschaften.

- Die erste Zeile ist die Startkonfiguration von N auf w.
- Jedes Fenster ist legal.

Dann ist T eine Berechnungstabelle von N auf Eingabe w und entspricht somit einem Berechnungspfad von N.

- $T(i,j) \neq T(i+1,j)$ ist nur dann möglich, falls einer der Einträge T(i,j-1), T(i,j) oder T(i,j+1) einen Zustand enthält.
- Falls die obere Zeile einen Zustand ändert, muss sich die untere Zeile gemäß δ ändern.
- D.h. jede Zeile ist eine Nachfolgekonfiguration der Vorgängerzeile.
- Damit ist T eine Berechnungstabelle.

Konstruktion von ϕ_{move}

- Informal gilt: $\phi_{move} = \bigwedge_{1 \le i \le n^k, 2 \le i \le n^k}$ Fenster (i, j) ist legal.
- Die Anzahl legaler Fenster hängt nur von den möglichen Übergängen in *N* ab, nicht von der Eingabe *w*.
- D.h. es gibt eine Menge F von 6-Tupeln (f_1, \ldots, f_6) , so dass F alle legalen Fenster beschreibt.
- ullet Damit können wir das Prädikt [Fenster (i,j) ist legal] formalisieren

$$\bigvee_{\substack{(f_1,\ldots,f_6)\in F}} (x_{i,j-1,f_1} \wedge x_{i,j,f_2} \wedge x_{i,j+1,f_3} \wedge x_{i+1,j-1,f_4} \wedge x_{i+1,j,f_5} \wedge x_{i+1,j+1,f_6}).$$

Reduktion ist polynomiell

Lemma Länge von ϕ

Sei N eine NTM mit Laufzeit n^k bei Eingabe w, |w|=n. Dann besitzt die Formel $\phi=\phi_{Start}\wedge\phi_{accept}\wedge\phi_{Eintrag}\wedge\phi_{move}$ Länge $\mathcal{O}(n^{2k})$, d.h. Länge polynomiell in n.

Zudem ist ϕ bei Eingabe (N, w) in Zeit $\mathcal{O}(n^{2k})$ berechenbar.

- ϕ_{Start} : Anzahl Literale: $\mathcal{O}(n^k)$, Berechnung direkt aus w
- ϕ_{accept} : Anzahl Literale: $\mathcal{O}(n^{2k})$
- $\phi_{Eintrag}$: Anzahl Literale in $\phi_{\geqslant 1}, \phi_{\leqslant 1}$: $\mathcal{O}(1)$, unabhängig von w.
 - Anzahl Literale in $\phi_{Eintrag}$: $\mathcal{O}(n^{2k})$.
 - ϕ_{move} : Anzahl legaler Fenster |F|: $\mathcal{O}(1)$, unabhängig von w.
 - Anzahl Literale in ϕ_{move} : $\mathcal{O}(n^{2k})$.

Fazit

Es ist klar, dass es eine 1 - 1 Korrespondenz gibt zwischen korrekten (legalen) Berechnungstabellen von N (also, von Berechnungspfaden von N) und Belegungen der Variablen von ϕ , und eine akzeptierende Berechnungstabelle existiert gdw eine erfüllbare Belegung von ϕ existiert.

Die Konstruktion von T ist quadratisch in der Laufzeit von der NTM N, also polynomiell in der Eingabelänge n.

Somit ist der Satz von Cook-Levin bewiesen.

Kryptographische Anwendungen.

Diffie-Hellman Schlüsselaustausch (1976)

Öffentliche Parameter: Primzahl p, Generator g von \mathbb{Z}_p^*

Protokoll Diffie-Hellman Schlüsselaustausch

EINGABE: p, g

- Alice wählt $\alpha \in_R \mathbb{Z}_{p-1}$ und schickt $g^{\alpha} \mod p$ an Bob.
- ② Bob wählt $\beta \in_R \mathbb{Z}_{p-1}$ und schickt $g^\beta \mod p$ an Alice.
- ullet Alice berechnet $ig(g^etaig)^lpha=g^{lphaeta},$ Bob analog $ig(g^lpha)^eta=g^{lphaeta}.$

Gemeinsamer geheimer DH-Schlüssel: $g^{lphaeta}$.

- Angreifer Eve erhält g, g^{α}, g^{β} .
- Sicherheit: Eve kann $g^{\alpha\beta}$ nicht von g^{y} , $y \in_{R} \mathbb{Z}_{p-1}$ unterscheiden.

Definition Decisional Diffie-Hellman (DDH)

Sei p prim, g Generator von \mathbb{Z}_p^* . Wir definieren die Sprache

$$\mathsf{DDH} := \{ (g^{\alpha}, g^{\beta}, g^{y}) \mid g^{y} = g^{\alpha\beta} \}.$$

Das ElGamal Kryptosystem (1984)

Parameter des ElGamal Kryptosystems:

öffentlich: p prim, g Generator von \mathbb{Z}_p^* , g^a geheim: $a \in \mathbb{Z}_{p-1}$

Algorithmus ElGamal Ver- und Entschlüsselung

- Verschlüsselung von $m \in \mathbb{Z}_p$ unter Verwendung von p, g, g^a .
 - ▶ Wähle $r \in_R \mathbb{Z}_{p-1}$.
 - Berechne $Enc(m) = (\gamma, \delta) = (g^r, m \cdot (g^a)^r) \in \mathbb{Z}_p^* \times \mathbb{Z}_p$.
- Entschlüsselung von Enc(m) unter Verwendung von p, a.
 - Berechne $Dec(Enc(m)) = \frac{\delta}{\gamma^a} = \frac{m \cdot g^{ar}}{g^{ar}} = m.$

Laufzeit:

- Verschlüsselung: $\mathcal{O}(\log r \cdot \log^2 p) = \mathcal{O}(\log^3 p)$
- Entschlüsselung: $\mathcal{O}(\log a \cdot \log^2 p) = \mathcal{O}(\log^3 p)$

Sicherheit von ElGamal

Intuitiv: Eve soll $\delta = m \cdot g^{ab}$ nicht von $x \in_R \mathbb{Z}_p$ unterscheiden können.

Protokoll Unterscheider

EINGABE: p, g, g^a

- ① Eve wählt $m \in \mathbb{Z}_p^*$ und schickt m an Alice. (Man beachte: $m \neq 0$.)
- 2 Alice wählt $b \in \{0, 1\}$:
 - Falls b = 0: Sende $Enc(m) = (g^r, m \cdot g^{ar})$ an Eve zurück.
 - Falls b = 1: Sende $(g^r, x) \in_R \mathbb{Z}_p^* \times \mathbb{Z}_p^*$ an Eve zurück.

Eves AUSGABE: $b' \in \{0, 1\}$

- Eve gewinnt das Spiel gdw b' = b.
- D.h. Eve muss δ von einer Zufallszahl x unterscheiden.

Definition Sprache ElGamal

Sei p prim und g ein Generator von \mathbb{Z}_p^* . Wir definieren

 $\mathsf{ELGAMAL} := \{ g^a, g^r, m, x \mid x = m \cdot g^{ar} \bmod p \}.$

Sicherheitsbeweis per Reduktion

Satz Sicherheit von ElGamal unter DDH

Das ElGamal Kryptosystem ist sicher gegen polynomielle Angreifer unter der Annahme, dass DDH nicht effizient entscheidbar ist.

Logik des Beweises:

- Zeigen: DDH ≤_p ELGAMAL
- D.h. jeder polynomielle Algorithmus für ELGAMAL liefert einen polynomiellen Algorithmus für DDH.
- Annahme: Es existiert ein polynomieller Angreifer A, der Verschlüsselungen von Zufallszahlen unterscheiden kann.
- Dann gibt es einen Algorithmus, der in polynomieller Zeit DH-Schlüssel $g^{\alpha\beta}$ von Zufallszahlen unterscheidet.
- Widerspruch: Nach Annahme gibt es keinen effizienten Algorithmus zum Entscheiden von DH-Schlüsseln $g^{\alpha\beta}$.
- Daher kann es auch keinen polynomiellen Angreifer A geben.

Reduktion f

Algorithmus M_f

EINGABE: $g^{lpha}, g^{eta}, g^{eta} \in \mathbb{Z}_p^*$

- Setze $g^a \leftarrow g^\alpha$ und $g^r \leftarrow g^\beta$.
- ② Wähle $m \in_R \mathbb{Z}_p^*$.
- **3** Berechne $x = m \cdot g^y \mod p$.

AUSGABE: g^a, g^r, m, x

Laufzeit:

- Eingabelänge: $\Omega(\log p)$
- Gesamtlaufzeit: $\mathcal{O}(\log^2(p))$

Korrektheit Reduktion: $w \in DDH \leq_p f(w) \in ELGAMAL$

Sei $(g^{\alpha}, g^{\beta}, g^{y}) \in DDH$.

- Dann gilt $g^y = g^{\alpha\beta} = g^{ar}$.
- Damit ist $x = m \cdot g^y = m \cdot g^{ar}$ korrekte Verschlüsselung von m.
- D.h. $(g^a, g^r, m, x) \in \mathsf{ELGAMAL}$

Sei $f(g^{\alpha}, g^{\beta}, g^{y}) = (g^{a}, g^{r}, m, x) \in \mathsf{ELGAMAL}.$

- Dann ist $x = m \cdot g^y$ eine korrekte Verschlüsselung von m.
- D.h. $d(m) = \frac{m \cdot g^y}{g^{ar}} = m$ und damit $g^y = g^{ar} = g^{\alpha\beta}$.
- Dann ist $(g^{\alpha}, g^{\beta}, g^{\gamma}) \in DDH$.

Brechen von ElGamal ist nicht schwerer als DDH

Satz

ELGAMAL \leq_p DDH

Beweis: Wir definieren die folgende Reduktion f.

Algorithmus M_f

EINGABE: $g^a, g^r, m, x \in \mathbb{Z}_p^*$

- **1** Setze $g^{\alpha} \leftarrow g^a$ und $g^{\beta} \leftarrow g^r$.
- 2 Berechne $g^y = \frac{x}{m}$.

AUSGABE: $g^{\alpha}, g^{\beta}, g^{y}$

Laufzeit:

- Eingabelänge: $\Omega(\log p)$
- Laufzeit: O(log² p)

Korrektheit von $f: w \in \mathsf{ELGAMAL} \Leftrightarrow f(w) \in \mathsf{DDH}$

Sei $(g^a, g^r, m, x) \in \mathsf{ELGAMAL}$.

- Dann ist $x = m \cdot g^{ar}$ korrekte Verschlüsselung von m.
- Damit gilt $\frac{x}{m} = g^{ar} = g^{\alpha\beta} = g^{y}$.
- D.h. $(g^{\alpha}, g^{\beta}, g^{y}) \in \mathsf{DDH}$.

Sei $f(g^a, g^r, m, x) = (g^{\alpha}, g^{\beta}, g^{y}) \in \mathsf{DDH}.$

- Dann gilt $g^y = g^{\alpha\beta} = g^{ar}$.
- Damit folgt $x = m \cdot g^y = m \cdot g^{ar}$ ist Verschlüsselung von m.
- D.h. $(g^a, g^r, m, x) \in \mathsf{ELGAMAL}$.