8. Woche Quadratische Reste und Anwendungen

Quadratische Reste

Definition Quadratischer Rest

Sei $n \in \mathbb{N}$. Ein Element $a \in \mathbb{Z}_n$ heißt *quadratischer Rest* in \mathbb{Z}_n , falls es ein $b \in \mathbb{Z}_n$ gibt mit $b^2 = a \mod n$. Wir definieren

 $QR_n = \{a \in \mathbb{Z}_n^* \mid a \text{ ist ein quadratischer Rest } \} \text{ und } QNR_n = \mathbb{Z}_n^* \setminus QR.$

Lemma Anzahl quadratischer Reste in primen Restklassen

Sei p > 2 prim. Dann gilt $|QR_p| = \frac{|\mathbb{Z}_p^*|}{2} = \frac{p-1}{2}$.

- Sei $a \in QR_p$. Dann gilt $a = b^2 = (-b)^2$.
- ⇒ jeder quadratische Rest besitzt ≥ 2 Quadratwurzeln.
- Da \mathbb{F}_p ein Körper ist, besitzt das Polynom $p(x) = x^2 a$ hat höchstens zwei Nullstellen in \mathbb{F}_p . D.h. a hat ≤ 2 Quadratwurzeln.
- Damit bildet $f: \mathbb{Z}_p^* \to QR, x \mapsto x^2 \mod p$ jeweils genau zwei Elemente $\pm b$ auf einen quadratischen Rest $a \in QR$ ab.
- \Rightarrow genau die Hälfte der Elemente in \mathbb{Z}_p^* ist in QR.

Das Legendre Symbol

Definition Legendre Symbol

Sei p > 2 prim und $a \in \mathbb{N}$. Das *Legendre Symbol* ist definiert als

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{falls } p | a \\ 1 & \text{falls } (a \bmod p) \in QR_p \\ -1 & \text{falls } (a \bmod p) \in QNR_p. \end{cases}$$

Notation, Fakte (aus DiMa I)

$$\mathbb{F}_{p}:=\left(\frac{\mathbb{Z}}{p\mathbb{Z}},+,\cdot,0,1\right)$$
 Körper.

Die multiplikative Gruppe $\mathbb{F}_p^* = \left(\frac{\mathbb{Z}}{p\mathbb{Z}}\right)^*$ ist zyklisch.

Berechnung des Legendre Symbols

Satz

$$\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \bmod p.$$

Beweis

- Für p|a sind beide Seiten Null. Gelte also $p \nmid a$.
- ② Da $a^{p-1} = 1 \mod p$, folgt $a^{\frac{p-1}{2}} = \pm 1$.
- **3** Sei g Generator von \mathbb{Z}_p^* und $a = g^j$ für ein $j \in \mathbb{Z}_{p-1}$.
- **1** Es gilt für die linke Seite $a \in QR_p$ gdw. j gerade ist.
- **1** Andererseits $a^{\frac{p-1}{2}} = g^{\frac{j(p-1)}{2}} = 1$ gdw p-1 teilt $\frac{j(p-1)}{2}$.
- Damit ist die rechte Seite ebenfalls 1 gdw j gerade ist.

Das Legendresymbol lässt sich in Zeit $\mathcal{O}(\log a \log^2 p)$ berechnen.

Eigenschaften des Legendre Symbols

Eigenschaften Quadratischer Reste mod p

- **1** Multiplikativität: $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$
- (QR_p, \cdot) ist eine multiplikative Gruppe.
- Zwei Beweise:
 - 1. Beweis: $\left(\frac{ab}{\rho}\right) = (ab)^{\frac{\rho-1}{2}} \mod \rho = a^{\frac{\rho-1}{2}} \mod \rho \cdot b^{\frac{\rho-1}{2}} \mod \rho = \left(\frac{a}{\rho}\right) \left(\frac{b}{\rho}\right)$.
 - 2. Beweis: Schreibe $a=g^j$ und $b=g^k$. Dann $ab=g^{j+k}$. Wenn j,k beide gerade (a,b) Quadrate) dann j+k gerade (also ab Quadrat), usw ...
- **2** Es bleibt zu Zeigen, dass $a \in QR \Rightarrow a^{-1} \in QR$. Wieder zwei Beweise.
 - 1. Beweis: $a = g^j$, also $a^{-1} = g^{p-1-j}$. j gerade $\Rightarrow p-1-j$
 - **2** 2. Beweis: $a = b^2$, und $b \neq 0$. Also $\exists b^{-1} \Rightarrow (b^{-1})^2 = a^{-1} \Rightarrow a^{-1} \in QR$.
- ohne Beweis (nicht-trivial)

Das Quadratische Reziprozitätsgesetz

Satz Quadratisches Reziprozitätsgesetz (Gauß)

Seien p, q > 2 prim. Dann gilt

$$\left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}} \left(\frac{p}{q}\right) = \begin{cases} -\left(\frac{p}{q}\right) & \text{für } p = q = 3 \text{ mod } 4\\ \left(\frac{p}{q}\right) & \text{sonst.} \end{cases}$$

ohne Beweis (nicht-trivial)

Liefert alternativen Algorithmus zur Berechnung des Legendre Symbols.

• Bsp:
$$\left(\frac{6}{11}\right) = \left(\frac{3}{11}\right) \cdot \left(\frac{2}{11}\right) = -\left(\frac{11}{3}\right) \cdot (-1)$$
$$= -\left(\frac{2}{3}\right) \cdot (-1) = -(-1) \cdot (-1) = (-1).$$

- D.h. 6 ist quadratischer Nichtrest in Z₁₁*.
- Benötigen Primfaktorzerlegung, um das QR-Gesetz anzuwenden.

Das Jacobi Symbol

Definition Jacobi Symbol

Sei $n = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k} \in \mathbb{N}$ ungerade und $a \in \mathbb{N}$. Dann ist das *Jacobi Symbol* definiert als

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{e_1} \cdot \ldots \cdot \left(\frac{a}{p_k}\right)^{e_k}.$$

- Warnung: $(\frac{a}{n}) = 1$ impliziert nicht, dass $a \in QR_n$ ist!!!
- Bsp: $\left(\frac{2}{15}\right) = \left(\frac{2}{3}\right) \cdot \left(\frac{2}{5}\right) = (-1)(-1) = 1$.
- D.h. 2 ∈ QNR₃ und 2 ∈ QNR₅. Damit besitzt x² = 2 weder Lösungen modulo 3 noch modulo 5.
- Nach CRT besitzt $x^2 = 2 \mod 15$ ebenfalls keine Lösung.

Verallgemeinerungen für das Jacobi Symbol

Satz

Für alle ungeraden m, n gilt

$$(\frac{2}{n}) = (-1)^{\frac{n^2-1}{8}}.$$

$$(\frac{m}{n}) = (-1)^{\frac{(m-1)(n-1)}{4}} \left(\frac{n}{m}\right) = \begin{cases} -\left(\frac{n}{m}\right) & \text{für } m = n = 3 \text{ mod } 4\\ \left(\frac{n}{m}\right) & \text{sonst.} \end{cases}$$

Wir beweisen hier nur das Analog des Reziprozitätsgesetzes.

- Falls ggT(m, n) > 1, sind beide Seiten 0. Sei also ggT(m, n) = 1.
- Schreiben Primfaktorzerlegung $m = p_1 \dots p_r$ und $n = q_1 \dots q_s$. $(p_i$'s und q_j 's können dabei jeweils mehrmals auftreten)
- Wandeln $\left(\frac{m}{n}\right) = \prod_{i,j} \left(\frac{p_i}{q_j}\right)$ zu $\left(\frac{n}{m}\right) = \prod_{i,j} \left(\frac{q_j}{p_i}\right)$ durch *rs*-malige Anwendung des Reziprozitätsgesetzes.
- Anzahl (-1) entspricht Anzahl Paare (i,j) mit $p_i = q_j = 3 \mod 4$.
- D.h. $\left(\frac{m}{n}\right) = -\left(\frac{n}{m}\right)$ gdw. ungerade viele p_i, g_j kongruent 3 mod 4.
- Es gibt ungerade viele $p_i, g_i = 3 \mod 4$ gdw. $m = n = 3 \mod 4$ ist.

Rekursive Berechnung des Jacobi Symbols

Algorithmus Jacobi-Symbol

EINGABE: *m*, *n* mit *n* ungerade

- Falls ggT(m, n) > 1, Ausgabe 0.
- 2 Sei $m = 2^k m'$ mit m' ungerade.
- 3 Ausgabe $(-1)^{\frac{k(n^2-1)}{8}} \cdot (-1)^{\frac{(m'-1)(n-1)}{4}} \cdot \text{Jacobi-Symbol}(n \mod m', m')$

AUSGABE: $(\frac{m}{n})$

Bsp:
$$\left(\frac{14}{15}\right) = \left(\frac{2}{15}\right) \cdot \left(\frac{7}{15}\right) = (-1) \cdot \left(\frac{15 \text{ mod } 7}{7}\right) = (-1).$$

- Laufzeit: Analog zum Euklidischen Algorithmus:
 O(log max{m, n}) rekursive Aufrufe.
- Jeder Aufruf kostet $\mathcal{O}(\log^2 \max\{m, n\})$.
- Korrektheit: Für ungerades n gilt

$$\left(\frac{m}{n}\right) = \left(\frac{2}{n}\right)^k \cdot \left(\frac{m'}{n}\right) = \left(\frac{2}{n}\right)^k \cdot \left(-1\right)^{\frac{(m'-1)(n-1)}{4}} \left(\frac{n \bmod m'}{m'}\right).$$

Das Quadratische Reste Problem

Definition Pseudoquadrate

Sei N = pq mit p, q prim. Eine Zahl a heißt Pseudoquadrat bezüglich N, falls

$$\left(\frac{a}{N}\right) = 1$$
 und $a \notin QR_N$.

Wir definieren die Sprache

QUADRAT:=
$$\{a \in \mathbb{Z}_N^* \mid a \in QR_N\}.$$

Sprache = Teilmenge der Menge aller Worte über einem Alfabet.

Sprache entscheiden = bestimmen, ob Wort in Sprache ist.

Distinguisher = Entscheider = Algorithmus, der entscheidet.

- Für alle Pseudoquadrate a gilt: $\left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = (-1)$.
- D.h. die Sprache QUADRAT kann effizient entschieden werden, falls p, q bekannt sind. Im Allgemeinen ist nur N bekannt.

Quadratische Reduositätsannahme (QR-Annahme)

Es gibt keinen polynomiellen Algorithmus, der QUADRAT entscheidet.

Quadratwurzeln in \mathbb{Z}_N^*

Satz Quadratwurzeln in \mathbb{Z}_N^*

Sei N=pq mit p,q prim und $p\equiv q\equiv 3 \bmod 4$ (sogenannte Blum-Zahl). Dann besitzt jedes $a=x^2\in QR_N$ genau eine Quadratwurzel in QR_N , die sogenannte Hauptwurzel.

- Die Lösungen des Gleichungssystems $\begin{cases} y \equiv \pm x \mod p \\ y \equiv \pm x \mod q \end{cases}$ liefern mittels Chinesischem Restsatz 4 Lösungen in \mathbb{Z}_N^* .
- Eine Lösung y ist in QR_N gdw sie in $QR_p \times QR_q$ (d.h. wenn $y \mod p$,bzw. $y \mod q$ Quadrat mod p, bzw. q ist).
- Betrachten Lösung modulo p (analog mod q): Es ist $\left(\frac{x}{p}\right) = \left(\frac{-1}{p}\right) \cdot \left(\frac{-x}{p}\right) = (-1) \cdot \left(\frac{-x}{p}\right)$ da $p = 3 \mod 4$.
- D.h. $\left(\frac{x}{\rho}\right) = -\left(\frac{-x}{\rho}\right)$ und entweder x oder -x ist in QR_{ρ} .
- Damit ist genau eine der 4 Lösungen in QR_N , nämlich die Lösung von $\begin{cases} y \equiv \epsilon_p x \mod p \\ y \equiv \epsilon_q x \mod q \end{cases}$ mit $\epsilon_p, \epsilon_q \in \{\pm 1\}$ und $\epsilon_p x$ bzw. $\epsilon_q x \in QR_p$ bzw. QR_q .

Berechnen von Quadratwurzeln modulo p

Satz Quadratwurzeln mod p

Sei p prim, $p = 3 \mod 4$ und $a \in QR_p$. Dann sind die beiden Quadratwurzeln von a von der Form

$$x = \pm a^{\frac{p+1}{4}} \mod p$$
, wobei $a^{\frac{p+1}{4}} \in QR_p$.

Es gilt

$$x^2 = a^{\frac{p+1}{2}} = a^{\frac{p-1}{2}} \cdot a = \left(\frac{a}{p}\right) \cdot a = a \bmod p.$$

• Ferner gilt $a^{\frac{p+1}{4}} \mod p \in QR_p$ wegen

$$\left(\frac{a^{\frac{p+1}{4}}}{p}\right) = \left(\frac{a}{p}\right)^{\frac{p+1}{4}} = 1.$$

D.h. Quadratwurzeln können in Zeit $\mathcal{O}(\log^3 p)$ berechnet werden.

Kryptographische Anwendungen von Quadratischen Resten.

1. Blum-Blum-Shub (BBS) Pseudozufallsgenerator

Korollar vom Satz Quadratwurzeln in \mathbb{Z}_N^*

Die Abb. $f: QR_N \to QR_N, x \mapsto x^2 \mod N$ ist eine Bijektion auf QR_N .

- (k, ℓ) Pseudozufallsgeneratoren generieren aus k Zufallsbits eine Sequenz von $\ell > k$ Zufallsbits.
- Der (k, ℓ) BBS Generator verwendet obige Bijektion.

Algorithmus BBS Pseudozufallsgenerator (1986)

EINGABE: N = pq Blumzahl der Bitlänge |N| = k, 1^{ℓ} mit $\ell \in \mathbb{N}$ und $\ell > k$

- **①** Wähle $a \in \mathbb{Z}_N^*$ und setze $s_0 = a^2 \mod N$.
- ② For i = 1 to ℓ
 - **○** Setze $s_i \leftarrow s_{i-1}^2 \mod N$. Gib $z_i = s_i \mod 2$ aus.

AUSGABE: $(z_1, ..., z_\ell) \in \{0, 1\}^\ell$.

Laufzeit: $\mathcal{O}(\ell \log^2 N)$, d.h. polynomiell in der Eingabelänge.

Die Sicherheit des BBS Generators

Sicherheit: Man kann die Verteilung der (z_1, \ldots, z_ℓ) nicht von der uniformen Verteilung auf $\{0,1\}^\ell$ unterscheiden.

Man kann folgendes zeigen:

- Sei *A* ein polynomieller Unterscheider für (z_1, \ldots, z_ℓ) .
- Dann gibt es einen polyn. Algorithmus B, der $s_0 \mod 2$ berechnet.

Satz Sicherheit des BBS Generators

Die Ausgabe des BBS Generators ist von der Gleichverteilung in polynomieller Zeit ununterscheidbar unter der QR-Annahme.

- Annahme: ∃ polyn. Unterscheider *A* für den BBS Generator.
- Sei B ein Algorithmus, der s₀ mod 2 berechnet.
- Zeigen, dass dann ein polyn. Algorithmus für QUADRAT existiert. (Widerspruch zur Quadratischen Residuositätsannahme)

Entscheiden der Sprache QUADRAT

Algorithmus für QUADRAT

EINGABE:
$$a \in \mathbb{Z}_N^*$$
 mit $\left(\frac{a}{N}\right) = 1$

- Setze $s_0 \leftarrow a \mod N$.
- **2** Berechne (z_1, \ldots, z_ℓ) mittels BBS Generator.
- **3** Berechne $z_0 \leftarrow B(z_1, \ldots, z_\ell)$.
- Falls $z_0 = (a \mod 2)$, Ausgabe " $x \in QR_N$ ". Sonst Ausgabe " $x \notin QR_N$ ".

Laufzeit: $\mathcal{O}(\ell \cdot \log^2 N + T(B))$

Korrektheit:

- Wegen $\left(\frac{a}{N}\right) = 1$ ist entweder a oder (-a) = N a in QR_N .
- D.h. a oder (-a) ist eine Hauptwurzel von $s_1 = a^2 \mod N$.
- Genau eine der beiden Zahlen a, (-a) ist gerade.
- z_0 ist das unterste Bit der Hauptwurzel von $s_1 = a^2 \mod N$.
- D.h. a ist eine Hauptwurzel gdw z₀ und a mod 2 übereinstimmen.

2. Probabilistische Verschlüsselung

Parameter des Goldwasser-Micali Kryptosystems (1984):

- Sei *N* = *pq*.
- Sei $a \in \mathbb{Z}_N^*$ ein Pseudoquadrat (falls N Blumzahl, kann man N-1 nehmen).
- Verschlüsselt werden Bits $m \in \{0, 1\}$.

Goldwasser-Micali Kryptosystem

- Verschlüsselung von *m* unter Verwendung von *N*, *a*.
 - ▶ Wähle $r \in \mathbb{Z}_N^*$.
 - ▶ Berechne $e(m, r) = a^m r^2 \mod N$.
- 2 Entschlüsselung von c = e(m, r) unter Verwendung von p, q.
 - $\qquad \text{Berechne } \left(\frac{c}{p}\right) = c^{\frac{p-1}{2}} \bmod p.$
 - Setze $m = d(c) = \begin{cases} 0 & \text{falls } c \in QR_N, \text{ d.h. falls } \left(\frac{c}{p}\right) = 1. \\ 1 & \text{falls } c \notin QR_N, \text{ d.h. falls } \left(\frac{c}{p}\right) = (-1). \end{cases}$

Sicherheit des Goldwasser-Micali Kryptosystems

Korrektheit

- Falls m = 0 ist $c = r^2$ ein zufälliger quadratischer Rest in \mathbb{Z}_N^* .
- Falls m = 1 ist $c = x \cdot r^2$ ein zufälliges Pseudoquadrat.
- Es gilt $\left(\frac{c}{N}\right) = \left(\frac{a^m r^2}{N}\right) = \left(\frac{a}{N}\right)^m \cdot \left(\frac{r^2}{N}\right) = 1$.
- D.h. entweder $\left(\frac{c}{p}\right) = \left(\frac{c}{q}\right) = 1$ oder $\left(\frac{c}{p}\right) = \left(\frac{c}{q}\right) = (-1)$.
- Im ersten Fall ist $c \in QR_N$, im zweiten Fall gilt $c \notin QR_N$.

Laufzeit:

- Verschlüsselung: $\mathcal{O}(\log^2 N)$
- Entschlüsselung: $\mathcal{O}(\log^3 N)$ (verbessert: $\mathcal{O}(\log^2 N)$)

Satz Sicherheit des Goldwasser-Micali Kryptosystems

Das GM Kryptosystem ist sicher unter der QR-Annahme.

 Unterscheiden von Verschlüsselungen von 0 und 1 ist äquivalent zum Entscheiden der Sprache QUADRAT.

2.1. Bit Commitments

Szenario informal:

- Commitment-Phase:
 - ▶ Alice platziert ein Bit $b \in \{0, 1\}$ in einem Safe, der in Bob's Zimmer steht. Bob besitzt keinen Safeschlüssel.
 - Bob kann den Safe nicht einsehen, lernt also nichts über b.
 (Conceiling Eigenschaft)
- Revealing-Phase:
 - Alice öffnet den Safe und zeigt Bob das Bit b.
 - Alice kann ihr Bit dabei nicht ändern.
 (Binding Eigenschaft)

Mathematische Modellierung

- Commitment mittels $f: \{0,1\} \times X \to Y$ für endliche Mengen X, Y.
- Commitment (sog. Blob): Wähle $x \in X$ und sende f(b, x) an Bob.
- Öffnen des Commitments: Sende b und x an Bob.

Bit Commitment via Goldwasser-Micali Kryptosystem

Öffentliche Parameter:

- Blumzahl N, Pseudoquadrat $a \in \mathbb{Z}_N^*$
- $X = Y = \mathbb{Z}_N^*$

Algorithmus Goldwasser-Micali Bit Commitment

- Commitment-Phase
 - ▶ Wähle $x \in \mathbb{Z}_N^*$.
 - Sende Blob $f(b, x) = a^b x^2 \mod N$ an Bob.
- Revealing-Phase
 - Sende b, x an Bob.
 - Bob überprüft die Korrektheit von $f(b, x) = a^b x^2 \mod N$.

Conceiling Eigenschaft:

• Unter der QR-Annahme lernt Bob nichts über das Bit $b \in \{0, 1\}$.

Binding Eigenschaft

Satz

Goldwasser-Micali Commitments besitzen die Binding Eigenschaft.

- Annahme: Alice kann Blob f(b, x) für b = 0 und b = 1 öffnen.
- D.h. Alice kann $x_1, x_2 \in \mathbb{Z}_N^*$ berechnen mit

$$f(b, x) = a^0 x_1^2 = a^1 x_2^2 \mod N.$$

• Daraus folgt $a = \left(\frac{x_1}{x_2}\right)^2 \mod N$, d.h. $\frac{x_1}{x_2}$ ist Quadratwurzel von a. (Widerspruch: a ist ein Pseudoquadrat in \mathbb{Z}_N^* .)

2.2. Münzwurf über das Telefon

- Bit Commitments haben zahlreiche Anwendungen in kryptographischen Protokollen.
- Exemplarisch hier ein Protokoll für einen fairen Münzwurf.

Algorithmus Münzwurf via Internet

- Alice sendet Bob Commitment für Bit $b \in \{0, 1\}$.
- 2 Bob rät ein Bit $b' \in \{0, 1\}$.
- 3 Alice öffnet ihr Bit. Bob gewinnt gdw b' = b.
 - Conceiling-Eigenschaft verhindert, dass Bob etwas über b lernt.
 - Binding-Eigenschaft verhindert, dass Alice b in 1 b' ändert.

3. Das Blum-Goldwasser Kryptosystem

- Öffentlicher Parameter: Blumzahl N = pq
- Klartextraum: $\{0,1\}^{\ell}$ für ein beliebiges ℓ
- Chiffretextraum: $\{0,1\}^{\ell} \times \mathbb{Z}_N^*$

Blum-Goldwasser Kryptosystem (1985)

- **①** Verschlüsselung von $m = (m_1, \dots, m_\ell) \in \{0, 1\}^\ell$ mittels N
 - ▶ Wähle $r \in \mathbb{Z}_N^*$.
 - $ightharpoonup \mathbf{z} = (z_1, \dots, z_\ell) \leftarrow \mathsf{BBS}$ Generator auf $s_0 = r^2 \bmod N$.
 - Berechne $\mathbf{c} = \mathbf{m} \oplus \mathbf{z}$ (Komponentenweise).
 - $\blacksquare \text{ Berechne } s_{\ell+1} = s_0^{2^{\ell+1}} \bmod N.$
 - AUSGABE: Chiffretext $(\mathbf{c}, s_{\ell+1}) \in \{0, 1\}^{\ell} \times \mathbb{Z}_{N}^{*}$.
- 2 Enschlüsselung von c mittels p, q.
 - Berechne $s_0 \in \mathbb{Z}_N^*$ als Lösung von $\left\{egin{array}{l} s_0 &= s_{\ell+1}^{\left(rac{p+1}{4}
 ight)^{\ell+1}} \mod p \ s_0 &= s_{\ell+1}^{\left(rac{q+1}{4}
 ight)^{\ell+1}} \mod q \end{array}
 ight.$
 - ▶ **z** = $(z_1, ..., z_\ell)$ ← BBS Generator auf $s_0 = r^2 \mod N$.
 - ▶ AUSGABE: $\mathbf{m} = \mathbf{c} \oplus \mathbf{z}$

Laufzeit und Korrektheit

Korrektheit:

- (z_1, \ldots, z_ℓ) wird als One-Time Pad für m verwendet.
- Entschlüsselung berechnet $\ell + 1$ -malig die Hauptwurzel von $s_{\ell+1}$.
- Dies rekonstruiert die Saat so des BBS Generators.

Laufzeit:

- Verschlüsselung: $\mathcal{O}(\ell \cdot \log^2 N)$
- Entschlüsselung: $\mathcal{O}(\log^3 N + \ell \cdot \log^2 N)$.

Fakt Sicherheit des BG-Kryptosystems

Das Blum Goldwasser Kryptosystem ist sicher unter der Annahme, dass Blumzahlen N = pq schwer zu faktorisieren sind.