Existenz von Einwegfunktionen

Satz Einweg-Eigenschaft von f_{FO}

Unter der Faktorisierungsannahme ist f_{FO} eine Einwegfunktion.

Beweis:

- f_{FO} ist mittels FACTOR-ONEWAY effizient berechenbar.
- z.z.: Invertierer A von f_{FO} impliziert Faktorisierer A'.
- Sei A ein Invertierer für f_{FO} mit Erfolgsws $Ws[Invert_{A,f_{FO}}(N)=1]$.
- Sei $x' \leftarrow \mathcal{A}(N)$ mit f(x') = N.
- Berechne die Faktorisierung $(N, p, q) \leftarrow GenModulus(1^n, x')$.
- Unter der Faktorisierungsannahme gilt $negl \ge Ws[Factor_{A',GenModulus}(n) = 1] = Ws[Invert_{A,f_{FO}}(n) = 1].$

Trapdoor-Permutationsfamilie

Definition Permutationsfamilie

Eine *Permutationsfamilie* $\Pi_f = (Gen, Samp, f)$ besteht aus 3 ppt Alg:

- **1** ← $Gen(1^n)$, wobei I eine Urbildmenge D für f definiert.
- $x \leftarrow Samp(I)$, wobei $x \in_R D$.

Definition Trapdoor-Permutationsfamilie

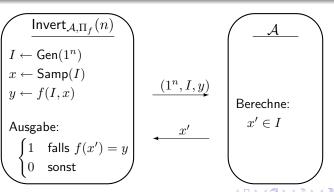
Trapdoor-Permutationsfamilie $\Pi_f = (Gen, Samp, f, Inv)$ besteht aus

- \bullet $(I, td) \leftarrow Gen(1^n)$ mit td als Trapdoor-Information
- 2 $x \leftarrow Samp(I)$ wie zuvor
- $y \leftarrow f(I, x)$ wie zuvor
- $x \leftarrow Inv(td, y) \text{ mit } Inv_{td}(f(x)) = x \text{ für alle } x \in D.$

Spiel Invertieren einer Permutation *Invert*_{A,Π_f}(n)

Sei A ein Invertierer für die Familie Π_f .

- $2 x' \leftarrow \mathcal{A}(I,y).$
- Invert_{A,\Pi}(n) = $\begin{cases} 1 & \text{falls } f(x') = y \\ 0 & \text{sonst} \end{cases}$



Konstruktion einer Trapdoor-Einwegpermutation

Definition Einweg-Permutation

Eine (Trapdoor-)Permutationsfamilie heißt (Td-)Einwegpermutation falls für alle ppt Algorithmen \mathcal{A} gilt $\mathrm{Ws}[\mathit{Invert}_{\mathcal{A},\Pi_f}(n)=1] \leq \mathrm{negl}(n)$.

Bsp: Trapdoor-Einwegpermutation unter RSA-Annahme

- $Gen(1^n)$: $(N, e, d) \leftarrow GenRSA(1^n)$, Ausgabe I = (N, e) und td = (N, d).
- Samp(I): Wähle $x \in_R \mathbb{Z}_N$.
- f(I, x): Berechne $y \leftarrow x^e \mod N$.
- Inv(td, y): Berechne $x \leftarrow y^d \mod N$.

Hardcore-Prädikat

Ziel: Destilliere Komplexität des Invertierens auf ein Bit.

Definition Hardcore-Prädikat

Sei Π_f eine Einwegpermutation. Sei hc ein deterministischer pt Alg mit Ausgabe eines Bits hc(x) bei Eingabe $x \in D$. hc heißt Hardcore-Prädikat für f falls für alle ppt Algorithmen $\mathcal A$ gilt:

$$\operatorname{Ws}[\mathcal{A}(f(x)) = hc(x)]] \leq \frac{1}{2} + \operatorname{negl}(n).$$

Intuition: Bild f(x) hilft nicht beim Berechnen von hc(x).

Bsp: Goldreich-Levin Hardcore-Prädikat (ohne Beweis)

- Sei f eine Einwegpermutation mit Definitionsbereich $\{0,1\}^n$.
- Sei $x = x_1 ... x_n \in \{0, 1\}^n$. Konstruiere

$$g(x,r) := (f(x),r) \text{ mit } r \in_R \{0,1\}^n.$$

- Offenbar ist g ebenfalls eine Einwegpermutation.
- Wir konstruieren ein Hardcore-Prädikat hc für g mittels

$$hc(x,r) = \langle x,r \rangle = \sum_{i=1}^{n} x_i r_i \mod 2.$$

Beweis der Hardcore-Eigenschaft ist nicht-trivial.

Verschlüsselung aus Trapdoor-Einwegpermutation

Algorithmus VERSCHLÜSSELUNG_{II}

Sei Π_f eine Td-Einwegpermutation mit Hardcore-Prädikat hc.

- **Quantificial Series :** $(I, td) \leftarrow Gen(1^n)$. Ausgabe pk = I und sk = td.
- **2 Enc:** Für $m \in \{0,1\}$ wähle $x \in_R D$ und berechne $c \leftarrow (f(x), hc(x) \oplus m)$.
- **Dec:** Für Chiffretext $c = (c_1, c_2)$ berechne $x \leftarrow Inv_{td}(c_1)$ und $m \leftarrow c_2 \oplus hc(x)$.

Intuition:

- hc(x) ist "pseudozufällig" gegeben f(x).
- D.h. $hc(x) \oplus m$ ist ununterscheidbar von 1-Bit One-Time Pad.

CPA-Sicherheit unserer Konstruktion

Sei Π_f eine Trapdoor-Einwegpermutation mit Hardcore-Prädikat hc. Dann ist VERSCHLÜSSELUNG Π CPA-sicher.

Beweis:

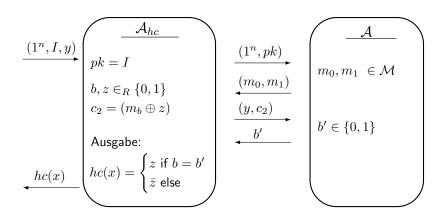
- Sei A ein Angreifer mit Erfolgsws $\epsilon(n) = \text{Ws}[PubK_{A,\Pi_{\ell}}^{cpa}(n) = 1].$
- OBdA $(m_0, m_1) \leftarrow \mathcal{A}(pk)$ mit $\{m_0, m_1\} = \{0, 1\}$. (Warum?)
- \bullet Verwenden ${\mathcal A}$ um einen Angreifer ${\mathcal A}_{\mathit{hc}}$ für hc zu konstruieren.

Algorithmus Angreifer A_{hc}

Eingabe: $I, y = f(x) \in D$

- **○** Setze $pk \leftarrow I$ und berechne $(m_0, m_1) \leftarrow A(pk)$.
- ② Wähle $b, z ∈_R \{0, 1\}$. Setze $c_2 \leftarrow m_b \oplus z$.

Angreifer A_{hc}



Beweis: Fortsetzung

- Sei $x = f^{-1}(y)$. A_{hc} rät z = hc(x).
- Es gilt Ws[$\mathcal{A}_{hc}(f(x)) = hc(x)$] = $\frac{1}{2} \cdot \text{Ws}[b = b' \mid z = hc(x)] + \frac{1}{2} \cdot \text{Ws}[b \neq b' \mid z \neq hc(x)].$
- 1. Fall z = hc(x): (y, c_2) ist korrekte Verschlüsselung von m_b , d.h. $\operatorname{Ws}[b = b' \mid z = hc(x)] = \epsilon(n)$.
- 2. Fall $z \neq hc(x)$: (y, c_2) ist Verschlüsselung von $\bar{m}_b = m_{\bar{b}}$, d.h. $\operatorname{Ws}[b \neq b' \mid z \neq hc(x)] = \epsilon(n)$.
- Da hc ein Hardcore-Prädikat ist, folgt

$$\frac{1}{2} + \operatorname{negl}(n) \ge \operatorname{Ws}[A_{hc}(f(x)) = hc(x)] = \epsilon(n).$$

