Quadratische Residuositätsannahme

Definition Quadratische Residuosität

Das Unterscheiden quadratischer Reste ist hart bezüglich GenModulus(1ⁿ) falls für alle ppt A gilt

$$|\operatorname{Ws}[A(N,qr)=1]-\operatorname{Ws}[A(N,qnr)=1]| \leq \frac{1}{2} + \operatorname{negl}(n),$$

wobei $qr \in_R QR_N$ und $qnr \in_R QNR_N^{+1}$.

QR-Annahme: Unterscheiden guadratischer Reste ist hart.

Idee des Goldwasser-Micali Kryptosystems

- pk = N, sk = (p, q)
- Verschlüsselung von 0 ist zufälliges x' ∈_R QR_N.
- Wähle $x \in_R \mathbb{Z}_N^*$ und berechne $x' \leftarrow x^2 \mod N$.
- Verschlüsselung von 1 ist zufälliges $y \in_R QNR_N^{+1}$.
- **Problem:** Wie wählt man y ohne p, q zu kennen?
- Abhilfe: Public-Key enthält $z \in_R QNR_N^{+1}$.
- Sender wählt $x \in_R \mathbb{Z}_N^*$ und berechnet $y \leftarrow z \cdot x^2 \mod N \in QNR_N^{+1}$

GOLDWASSER-MICALI Verschlüsselung (1984)

Definition GOLDWASSER-MICALI Verschlüsselung

Sei n ein Sicherheitsparameter.

- **10 Gen:** $(N, p, q) \leftarrow GenModulus(1^n)$. Wähle $z \in_R QNR_N^{+1}$. (Wie?) Schlüssel: pk = (N, z) und sk = (p, q)
- **2 Enc:** Für $m \in \{0,1\}$ berechne $c \leftarrow z^m \cdot x^2 \mod N$.
- **3 Dec:** Berechne $m = \begin{cases} 0 & \text{falls } \left(\frac{c}{p}\right) = 1 \\ 1 & \text{sonst} \end{cases}$.

Korrektheit:

- Für m=0 ist $c\in QR_N\simeq QR_p imes QR_q$, d.h. $\left(\frac{c}{p}\right)=1$.
- Für m=1 ist $c\in QNR_N^{+1}\simeq QNR_p imes QNR_q$, d.h. $\left(\frac{c}{p}\right)=(-1)$.

Sicherheit von GOLDWASSER-MICALI Verschlüsselung

Satz Sicherheit von GOLDWASSER-MICALI

GOLDWASSER-MICALI ist CPA-sicher.

Beweis: Sei Π die GOLDWASSER-MICALI Verschlüsselung.

- Sei A ein Angreifer für Π mit $\epsilon(n) = \operatorname{Ws}[PubK_{A,N}^{cpa}(n) = 1].$
- Konstruieren Unterscheider D für Quadratische Residuosität.

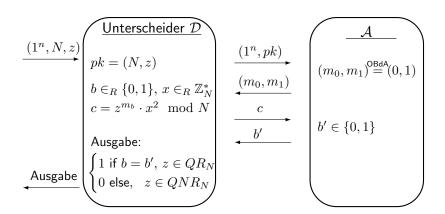
Algoritmus QR-Unterscheider D

EINGABE:
$$(N, z)$$
 mit $(\frac{z}{N}) = 1$

- Setze pk = (N, z) und berechne $(m_0, m_1) \leftarrow \mathcal{A}(pk)$. • OBdA gilt $\{m_0, m_1\} = \{0, 1\}$.
- ② Wähle $b \in_R \{0,1\}$ und $x \in_R \mathbb{Z}_N^*$. Berechne $c \leftarrow z^{m_b} \cdot x^2 \mod N$.

AUSGABE:
$$\begin{cases} 1 & \text{falls } b = b', \text{ Interpretation } z \in QR_N \\ 0 & \text{sonst,} \end{cases}$$
 Interpretation $z \in QNR_N$

Algorithmus QR-Unterscheider



Sicherheit von GOLDWASSER-MICALI Verschlüsselung

Fall 1: $z \in QNR_N^{+1}$

- Verteilung von c ist identisch zu GOLDWASSER-MICALI.
- D.h. $Ws[D(N, qnr) = 1] = \epsilon(n)$.

Fall 2: $z \in QR_N$

- Falls 0 verschlüsselt wird, gilt $c = x^2 \in_R QR_N$.
- Falls 1 verschlüsselt wird, gilt $c = z \cdot x^2 \in_R QR_N$.
- D.h. die Verteilung von c ist unabhängig von der Wahl von b.
- Sei Π' GOLDWASSER-MICALI Verschlüsselung mit $z \in QR_N$.
- Dann gilt $\operatorname{Ws}[D(N,qr)=1]=\operatorname{Ws}[PubK_{\mathcal{A},\Pi'}^{cpa}(n)]=\frac{1}{2}.$
- Unter der Quadratischen Residuositäts-Annahme folgt $negl(n) \ge |Ws[D(N,qr)=1] Ws[D(N,qnr)=1]| = \left|\frac{1}{2} \epsilon(n)\right|$.
- Daraus folgt $\epsilon(n) \leq \frac{1}{2} + \text{negl}(n)$.

Rabin Verschlüsselung 1979

Idee: Rabin Verschlüsselung

- Beobachtung: Berechnen von Wurzeln in \mathbb{Z}_p ist effizient möglich.
- Ziehen von Quadratwurzeln in \mathbb{Z}_N ist äquivalent zum Faktorisieren.

Vorteil: CPA-Sicherheit beruht nur auf Faktorisierungsannahme.

- RSA: Berechnen von e-ten Wurzeln in \mathbb{Z}_n .
- Goldwasser-Micali: Unterscheiden von QR_N und QNR_N.

Satz Ziehen von Wurzeln in \mathbb{Z}_p

Sei p prim mit $p = 3 \mod 4$ und $a \in QR_p$. Dann gilt für $b = a^{\frac{p+1}{4}} \mod p$, dass $b^2 = a \mod p$.

Beweis:

- Es gilt $\left(a^{\frac{p+1}{4}}\right)^2 = a^{\frac{p+1}{2}} = a^{\frac{p-1}{2}} \cdot a = a \mod p$.
- Man beachte, dass $\frac{p+1}{4} \in \mathbb{N}$ wegen $p = 3 \mod 4$.

Quadratwurzel bei bekannter Faktorisierung

Definition Blum-Zahl

Sei N = pq ein RSA-Modul. N heißt Blum-Zahl falls $p = q = 3 \mod 4$.

Satz Quadratwurzeln in \mathbb{Z}_N

Sei N=pq eine Blum-Zahl mit bekannten p,q. Dann können die vier Quadratwurzeln von $a\in QR_N$ in Zeit $\mathcal{O}(\log^3 N)$ berechnet werden.

Beweis:

Algorithmus QUADRATWURZEL

EINGABE: $N, p, q, a \in QR_N$

AUSGABE: $b_1, \ldots, b_4 \text{ mit } b_i^2 = a \mod N$

Quadratwurzeln ohne Faktorisierung

Spiel Wurzelziehen $SQR_{A,GenModulus}(n)$

- **2** Wähle $z \in QR_N$.

Definition Quadratwurzelannahme

Das Berechnen von Quadratwurzeln ist hart bezüglich GenModulus, falls für alle ppt \mathcal{A} gilt $Ws[SRQ_{\mathcal{A},GenModulus}(n)=1] \leq negl(n)$. Quadratwurzelannahme: Berechnen von Quadratwurzeln ist hart.

Spiel Wurzelziehen

Nicht-triviale Quadratwurzeln

Satz Faktorisieren mit Wurzeln

Sei N=pq ein RSA-Modul. Seien $x,y\in\mathbb{Z}_N^*$ mit $x^2=y^2$ mod N und $x\neq \pm y$ mod N. Dann können p,q in Zeit $\mathcal{O}(\log^2 N)$ berechnet werden.

Beweis:

- Mittels CRT erhalten wir $x \simeq (x_p, x_q) \in \mathbb{Z}_p^* \times \mathbb{Z}_q^*$.
- Es gilt $y = (x_p, -x_q)$ oder $y = (-x_p, x_q)$.
- Wir betrachten den Fall $y = (x_p, -x_q)$. Der zweite Fall ist analog.
- Es gilt $x + y = (2x_p, 0)$ bzw. $x y = (0, 2x_q)$.
- Damit folgt $\operatorname{ggT}(N,x+y)=q$ bzw. $\operatorname{ggT}(N,x-y)=p$ wegen $2x_p\in\mathbb{Z}_p^*$ und $2x_q\in\mathbb{Z}_q^*$.

Quadratwurzeln implizieren Faktorisierung

Satz Quadratwurzeln implizieren Faktorisierung

Quadratwurzel- und Faktorisierungsannahme sind äquivalent.

Beweis:

- Bereits gezeigt: Faktorisierung impliziert Quadratwurzeln.
- ullet z.z.: ${\mathcal A}$ für Quadratwurzel impliziert ${\mathcal A}_{\it factor}$ für Faktorisierung.
- Sei $\epsilon(n) = \text{Ws}[SQR_{A,GenModulus}(n) = 1].$

Algorithmus A_{factor}

EINGABE: N

- **①** Wähle $x \in \mathbb{Z}_N^*$ und berechne $z \leftarrow x^2 \mod N$.
- $y \leftarrow \mathcal{A}(N, z)$
- **3** Falls $x = \pm y$, Abbruch.

AUSGABE: $p, q = \{ggT(N, x + y), ggT(N, x - y)\}$

Faktorisieren mit Quadratwurzeln

Unter der Faktorisierungsannahme gilt

negl(n)
$$\geq$$
 Ws[Factor_{A_{factor},GenModulus}(n) = 1]
= Ws[x $\neq \pm y \mod N \land x^2 = y^2 \mod N$]
= Ws[x $\neq \pm y \mod N \mid x^2 = z \mod N$] · Ws[y² = z mod N]
= Ws[x $\neq \pm y \mod N \mid x^2 = z \mod N$] · $\epsilon(n)$
= $\frac{1}{2} \cdot \epsilon(n)$

• Die letzte Gleichung folgt, da z exakt vier Wurzeln in \mathbb{Z}_N^* besitzt.

Einwegfunktion unter Quadratwurzelannahme

Definition Einwegfunktion QUADRAT

Definieren Einwegfunktionsfamilie QUADRAT= (Gen, Samp, f) als

- **1 Gen(1ⁿ)**: $(N, p, q) \leftarrow GenModulus(1ⁿ)$, Ausgabe I = N. Definiert $f: \mathbb{Z}_N^* \rightarrow QR_N$.
- **2** Samp(I): Wähle $x \in_R \mathbb{Z}_N^*$ zufällig.

Anmerkungen:

- QUADRAT ist Einwegfunktion unter der Quadratwurzelannahme.
- D.h. QUADRAT ist Einwegfunktion unter Faktorisierungsannahme.
- **Ziel:** Konstruktion einer Trapdoor-Einwegpermutation.

