DCR Annahme

Satz Decisional Composite Residuosity (DCR)

Das Decisional Composite Residuosity Problem ist hart bezüglich GenModulus falls für alle ppt \mathcal{A} und $r \in_{R} \mathbb{Z}_{N^{2}}^{*}$ gilt

$$\left|\operatorname{Ws}[\mathcal{A}(N,r^N \bmod N^2) = 1] - \operatorname{Ws}[\mathcal{A}(N,r) = 1]\right| \leq \operatorname{\textit{negl}}(n).$$

DCR Annahme: DCR ist hart bezüglich GenModulus.

• DCR Annahme: Unterscheiden von (0, r) und (r', r) ist schwer.

Idee: zur Konstruktion einer Verschlüsselungsfunktion

- Sei $m \in \mathbb{Z}_N$. Wähle einen zufälligen N-ten Rest (0, r) und setze $c \leftarrow (m, 1) \cdot (0, r) = (m, r).$
- Da (0, r) ununterscheidbar von (r', r), ist c ununterscheidbar von $c' \leftarrow (m, 1) \cdot (r', r) = (m + r', r).$
- c' = (m + r', r) ist für $r' \in_R \mathbb{Z}_N$ ein zufälliges Element in $\mathbb{Z}_N \times \mathbb{Z}_N^*$.
- Insbesondere ist c' unabhängig von m.

Verschlüsselung

Algorithmus Verschlüsselung

EINGABE: $m \in \mathbb{Z}_N$

- Wähle $r \in_R \mathbb{Z}_N^*$.
- **2** Berechne $c \leftarrow f(m, r) = (1 + N)^m \cdot r^N \mod N^2$.

AUSGABE: $c \in \mathbb{Z}_{N^2}^*$

Anmerkungen:

- Wir berechnen das Bild von (m, r) unter unserem Isomorphismus.
- Faktor der Nachrichtenexpansion beträgt 2.

Entschlüsselung

Algorithmus Entschlüsselung

EINGABE:
$$c \simeq (m, r) \in \mathbb{Z}_{N^2}^*$$

- **1** Berechne $c' \leftarrow c^{\phi(N)} \mod N^2$.
- ② Berechne $m' \leftarrow \frac{c'-1}{N}$ über \mathbb{N} .
- **3** Berechne $m \leftarrow m' \cdot \phi(N)^{-1} \mod N$.

AUSGABE: $m \in \mathbb{Z}_N$

Korrektheit:

- Es gilt $c' \simeq (m,r)^{\phi(N)} = (m\phi(N),r^{\phi(N)}) = (m\phi(N),1).$
- Damit gilt

$$c' = (1 + N)^{m\phi(N) \mod N} \ 1^N = 1 + (m\phi(N) \mod N) \cdot N \mod N^2.$$

- Da 1 + $(m\phi(N) \mod N)N < N^2$ gilt die Gleichung über \mathbb{N} .
- Daraus folgt $m' = m\phi(N) \mod N$. Multiplikation mit $\phi(N)^{-1}$ liefert

$$m = m' \cdot \phi(N)^{-1} \mod N$$
.

Paillier Kryptosystem (1999)

Algorithmus Paillier Verschlüsselung

- **1 Gen:** $(N, p, q) \leftarrow GenModulus(1^n)$. Ausgabe $pk = N, sk = \phi(N)$.
- **2 Enc:** Für eine Nachricht $m \in \mathbb{Z}_N$, wähle ein $r \in_R \mathbb{Z}_N^*$ und berechne $c \leftarrow (1 + N)^m \cdot r^N \mod N^2$.
- **3 Dec:** Für einen Chiffretext $c \in \mathbb{Z}_{N^2}^*$ berechne

$$m \leftarrow \frac{\left(c^{\phi(N) \mod N^2}\right)-1}{N} \cdot \phi(N)^{-1} \mod N.$$

Sicherheit von Paillier Verschlüsselung

Satz Sicherheit von Paillier Verschlüsselung

Unter der DCR Annahme ist Paillier Verschlüsselung CPA-sicher.

Beweis:

- Sei Π das Paillier Verschlüsselungs-Verfahren.
- Sei \mathcal{A} ein Angreifer mit Erfolgsws $\epsilon(n) = \operatorname{Ws}[PubK_{\mathcal{A},\Pi}^{cpa}(n) = 1].$
- ullet Konstruieren Algorithmus $\mathcal{A}_{\textit{dcr}}$ für das DCR Problem.

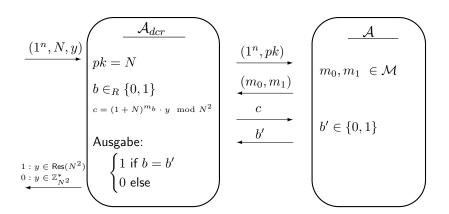
Algorithmus DCR Unterscheider A_{dcr}

EINGABE: N, y

- **①** Setze pk = N und berechne $(m_0, m_1) \leftarrow \mathcal{A}(pk)$.
- ② Wähle $b \in \{0,1\}$ und berechne $c \leftarrow (1 + N)^{m_b} \cdot y \mod N^2$.

$$\mathsf{AUSGABE:} = \left\{ \begin{array}{ll} 1 & \mathsf{falls} \ b = b', & \mathsf{Interpretation} \ y \in \mathit{Res}(N^2) \\ 0 & \mathsf{sonst}, & \mathsf{Interpretation} \ y \in \mathbb{Z}_{N^2}^* \end{array} \right.$$

Algorithmus DRC Unterscheider



Sicherheit von Paillier Verschlüsselung

Fall 1: $y \in_R Res(N^2)$, d.h. $y = r^N$ für $r \in_R \mathbb{Z}_{N^2}$.

- Verteilung von c identisch zum Paillier Verfahren.
- D.h. $\operatorname{Ws}[\mathcal{A}_{dcr}(N, r^N) = 1] = \epsilon(n)$.

Fall 2: $y \in_R \mathbb{Z}_{N^2}^*$, d.h. $y = r \in_R \mathbb{Z}_{N^2}^*$.

- Dann ist $c = (1 + N)^{m_b} \cdot y \mod N^2$ zufällig in $\mathbb{Z}_{N^2}^*$.
- Insbesondere ist die Verteilung von c unabhängig von b.
- Daraus folgt $Ws[A_{dcr}(N, r) = 1] = \frac{1}{2}$.
- Unter der DCR-Annahme folgt

$$\operatorname{negl}(n) \geq \left| \operatorname{Ws}[\mathcal{A}_{dcr}(N, r^N \bmod N^2) = 1] - \operatorname{Ws}[\mathcal{A}_{dcr}(N, r) = 1] \right|$$
$$= \left| \epsilon(n) - \frac{1}{2} \right|.$$

• Daraus folgt $\epsilon(n) \leq \frac{1}{2} + \text{negl}(n)$.

Homomorphe Verschlüsselung

Definition Homomorphe Verschlüsselung

Sei Π ein Verschlüsselungsverfahren mit $Enc: G \rightarrow G'$ für Gruppen G, G'. Π heißt homomorph, falls $Enc(m_1) \circ Enc(m_2)$ eine gültige Verschlüsselung von $m_1 \circ m_2$ für alle $m_1, m_2 \in G$ ist.

Bsp:

 Textbook-RSA mit Enc : Z_N → Z_N und $m_1^e \cdot m_2^e = (m_1 \cdot m_2)^e \mod N.$

Eigenschaft: Textbook-RSA ist nicht CPA-sicher.

- **ElGamal** mit $Enc: \mathbb{Z}_p^* \to \mathbb{Z}_p^* \times \mathbb{Z}_p^*$ und $(q^{y_1}, h^{y_1}m_1) \cdot (q^{y_2}, h^{y_2}m_2) = (q^{y_1+y_2}, h^{y_1+y_2}m_1m_2).$ Eigenschaft: $G_1 = (\mathbb{Z}_p^*, \cdot)$ ist eine multiplikative Gruppe.
- Goldwasser-Micali mit $Enc: \{0,1\} \to \mathbb{Z}_N^*$ und $Z^{m_1}X_1^2 \cdot Z^{m_2}X_2^2 = Z^{m_1+m_2}(X_1X_2)^2 \mod N.$

Eigenschaft: $G_1 = (\mathbb{F}_2, +)$ ist eine additive Gruppe.

Voll homomorpe Verschlüsselung

Definition Voll homomorphe Verschlüsselung

Sei Π ein Verschlüsselungsverfahren mit $Enc: R \to R'$ für Ringe R, R'. Π heißt $voll\ homomorph$, falls

- $Enc(m_1) + Enc(m_2)$ eine gültige Verschlüsselung von $m_1 + m_2$
- ② $Enc(m_1) \cdot Enc(m_2)$ eine gültige Verschlüsselung von $m_1 \cdot m_2$ für alle $m_1, m_2 \in R$ ist.

Anwendung: Cloud Computing

- Sende verschlüsselt Algorithmus A, Eingabe x an einen Server S.
- S berechnet daraus die verschlüsselte Ausgabe Enc(A(x)).
- Erlaubt Auslagern von Berechnungen an S.
- S lernt nichts über das Programm A oder die Eingabe x.

Erste voll homomorphe Verschlüsselung:

Gentry Verfahren (2009), basierend auf Problemen der Gittertheorie.

E-voting mit Paillier

• Paillier mit $Enc: \mathbb{Z}_N \to \mathbb{Z}_{N^2}^*$ und

$$(1+N)^{m_1}r_1^N\cdot (1+N)^{m_2}r_2^N=(1+N)^{m_1+m_2}(r_1r_2)^N \bmod N^2.$$
 Eigenschaft: $G_1=(\mathbb{Z}_N,+)$ ist additiv und groß.

Algorithmus E-voting mit Paillier

- Wahlleiter generiert öffentlichen RSA-Modul N = pq.
- Wähler $i \in [n]$ mit n < N wählt $v_i = 0$ für NEIN, $v_i = 1$ für JA und sendet an alle anderen Wähler $c_i = (1 + N)^{v_i} r_i^N \mod N^2$, $r_i \in_R \mathbb{Z}_N$.
- Wähler aggregieren $c := \prod_{i=1}^{n} c_i \mod N^2$.
- Wahlleiter erhält c und veröffentlicht $Dec(c) = \sum_{i=1}^{n} v_i$.

Eigenschaften: (falls alle Parteien sich an das Protokoll halten)

- Wahlleiter erhält *c*, ohne die einzelnen *c*_i kennenzulernen.
- Kein Wähler erhält Informationen über die v_i anderer Wähler.
- Berechnung von *c* ist öffentlich verifizierbar.

