Einwegfunktionen

Ziel: CPA-sichere Verschlüsselung aus Trapdoor-Einwegpermutation

Später: CCA-sichere Verschlüsselung aus Trapdoor-Einwegperm.

Spiel Invertieren $Invert_{A,f}(n)$

Sei $f:\{0,1\}^* \to \{0,1\}^*$ effizient berechenbar, $\mathcal A$ ein Invertierer für f.

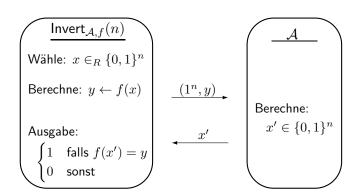
- **○** Wähle $x \in_R \{0,1\}^n$. Berechne $y \leftarrow f(x)$.
- $2 x' \leftarrow \mathcal{A}(1^n, y)$
- Invert_{A,f}(n) = $\begin{cases} 1 & \text{falls } f(x') = y \\ 0 & \text{sonst} \end{cases}$

Definition Einwegfunktion

Eine Funktion $f: \{0,1\}^* \rightarrow \{0,1\}^*$ heißt *Einwegfunktion*, falls

- **①** Es existiert ein deterministischer pt Alg \mathcal{B} mit $f(x) \leftarrow \mathcal{B}(x)$.
- Für alle ppt Algorithmen \mathcal{A} gilt $Ws[Invert_{\mathcal{A},f}(n)=1] \leq negl(n)$.

Spiel Invertieren



Die Faktorisierungsannahme

- **Problem:** Existenz von Einwegfunktionen ist ein offenes Problem.
- Konstruktion unter Komplexitätsannahme (z.B. Faktorisierung)
- Verwenden dazu $(N, p, q) \leftarrow GenModulus(1^n)$ von RSA.

Spiel Faktorisierungsspiel $Factor_{A,GenModulus}(n)$

- $(p',q') \leftarrow \mathcal{A}(N) \text{ mit } p',q' > 1.$

Spiel Faktorisieren

Definition Faktorisierungsannahme

Faktorisieren ist hart bezüglich GenModulus falls für alle ppt Algorithmen \mathcal{A} gilt $Ws[Factor_{\mathcal{A},GenModulus}(n)=1] \leq negl(n)$. Faktorisierungsannahme: Faktorisieren ist hart bezüglich GenModulus.

Konstruktion aus Faktorisierungsannahme

- Sei p(n) ein Polynom, so dass GenModulus(1ⁿ) höchstens p(n)
 Zufallsbits verwendet.
- OBdA sei $p(n) : \mathbb{N} \to \mathbb{N}$ monoton wachsend.

Algorithmus FACTOR-ONEWAY *f*_{FO}

Eingabe: $x \in \{0, 1\}^*$

- **1** Berechne n mit $p(n) \le |x| < p(n+1)$.
- $(N, p, q) := GenModulus(1^n, x)$, wobei GenModulus die Eingabe x als internen Zufallsstring verwendet.

Ausgabe: N

Bemerkung:

• *GenModulus*(1ⁿ, x) ist deterministisch. (Derandomisierung)

Existenz von Einwegfunktionen

Satz Einweg-Eigenschaft von f_{FO}

Unter der Faktorisierungsannahme ist f_{FO} eine Einwegfunktion.

Beweis:

- Sei A ein Invertierer für f_{FO} mit Erfolgsws $\epsilon(n)$.
- Konstruieren mit A Faktorisierer A' im Spiel $Factor_{A',GenModulus}(n)$.

Algorithmus Faktorisierer A'

EINGABE: 1ⁿ, N

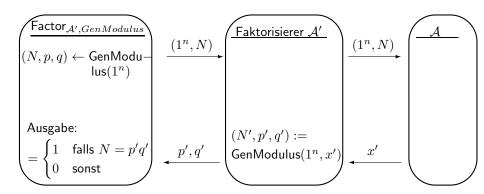
 $(N', p', q') \leftarrow GenModulus(1^n, x').$

AUSGABE: p', q'

Unter der Faktorisierungsannahme gilt

 $\operatorname{negl}(n) \geq \operatorname{Ws}[\textit{Factor}_{A', \textit{GenModulus}}(n) = 1] = \operatorname{Ws}[\textit{Invert}_{A, \textit{f}_{FO}}(n) = 1] = \epsilon(n).$

Faktorisieren mit Invertierer für f_{FO}



Trapdoor-Permutationsfamilie

Definition Permutationsfamilie

Eine Permutationsfamilie $\Pi_f = (Gen, Samp, f)$ besteht aus 3 ppt Alg:

- **1** \vdash I ← $Gen(1^n)$, wobei I eine Urbildmenge D für f definiert.
- 2 $x \leftarrow Samp(I)$, wobei $x \in_R D$.

Definition Trapdoor-Permutationsfamilie

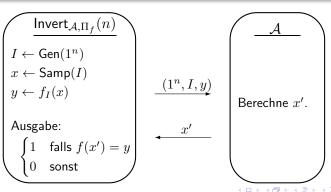
Trapdoor-Permutationsfamilie $\Pi_f = (Gen, Samp, f, Inv)$ besteht aus

- **(**I, td) ← $Gen(1^n)$ mit td als Trapdoor-Information.
- 2 $x \leftarrow Samp(I)$ wie zuvor.
- $y := f_I(x)$ wie zuvor.

Spiel Invertieren einer Permutation *Invert*_{A, Π_t}(n)

Sei A ein Invertierer für die Familie Π_f .

- 1 \leftarrow Gen(1ⁿ), $x \leftarrow$ Samp(1) und $y \leftarrow f(1, x)$.
- $x' \leftarrow \mathcal{A}(I, y).$
- Invert_{A,\Pi}(n) = $\begin{cases} 1 & \text{falls } f(x') = y \\ 0 & \text{sonst} \end{cases}$



Konstruktion einer Trapdoor-Einwegpermutation

Definition Einweg-Permutation

Eine (Trapdoor-)Permutationsfamilie heißt (Td-)Einwegpermutation falls für alle ppt Algorithmen \mathcal{A} gilt $\mathrm{Ws}[\mathit{Invert}_{\mathcal{A},\Pi_f}(n)=1] \leq \mathrm{negl}(n)$.

Bsp: Trapdoor-Einwegpermutation unter RSA-Annahme

- $Gen(1^n)$: $(N, e, d) \leftarrow GenRSA(1^n)$, Ausgabe I = (N, e) und td = (N, d).
- Samp(I): Wähle $x \in_R \mathbb{Z}_N$.
- $f_I(x)$: Berechne $y := x^e \mod N$.
- $Inv_{td}(y)$: Berechne $x := y^d \mod N$.

Hardcore-Prädikat

Ziel: Destilliere Komplexität des Invertierens auf ein Bit.

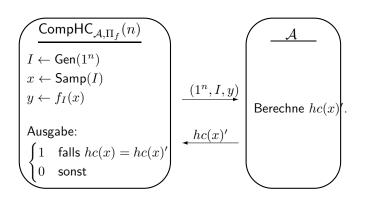
Definition Hardcore-Prädikat

Sei Π_f eine Einwegpermutation. Sei hc ein deterministischer pt Alg mit Ausgabe eines Bits hc(x) bei Eingabe $x \in D$. hc heißt Hardcore-Prädikat für f falls für alle ppt Algorithmen $\mathcal A$ gilt:

$$\operatorname{Ws}[\mathcal{A}(1^n, I, f(x)) = hc(x)]] \leq \frac{1}{2} + \operatorname{negl}(n).$$

Intuition: Bild f(x) hilft nicht beim Berechnen von hc(x).

Spiel zum Berechnen des Hardcore-Prädikats



Falls hc ein Hardcoreprädikat ist, so gilt für alle ppt A

$$\operatorname{Ws}[\operatorname{\textit{CompHC}}_{\mathcal{A},\Pi_f}(n)=1]=\operatorname{Ws}[\mathcal{A}(1^n,I,f(x))=hc(x)]]\leq \tfrac{1}{2}+\operatorname{negl}(n).$$

Goldreich-Levin Hardcore-Prädikat

Satz von Goldreich-Levin

Sei Π_f eine Einwegpermutation. Dann existiert eine Einwegpermutation Π_g mit Hardcoreprädikat hc.

Konstruktion: (ohne Beweis)

- Sei f eine Einwegpermutation mit Definitionsbereich $\{0,1\}^n$.
- Sei $x = x_1 \dots x_n \in \{0, 1\}^n$. Konstruiere $g(x, r) := (f(x), r) \text{ mit } r \in_{\mathcal{R}} \{0, 1\}^n$.
- Offenbar ist g ebenfalls eine Einwegpermutation.
- Wir konstruieren ein Hardcore-Prädikat hc für g mittels

$$hc(x,r) = \langle x,r \rangle = \sum_{i=1}^{n} x_i r_i \mod 2.$$

Beweis der Hardcore-Eigenschaft ist nicht-trivial.

Verschlüsselung aus Trapdoor-Einwegpermutation

Algorithmus Π_{cpa}

Sei Π_f eine Td-Einwegpermutation mit Hardcore-Prädikat hc.

- **3 Gen:** $(I, td) \leftarrow Gen(1^n)$. Ausgabe pk = I und sk = td.
- **2 Enc:** Für $m \in \{0, 1\}$ setze $x \leftarrow Sample(I)$ und berechne $c \leftarrow (f(x), hc(x) \oplus m)$.
- **Dec:** Für Chiffretext $c = (c_1, c_2)$ berechne $x := Inv_{td}(c_1)$ und $m := c_2 \oplus hc(x)$.

Intuition:

- hc(x) ist "pseudozufällig" gegeben f(x).
- D.h. $hc(x) \oplus m$ ist ununterscheidbar von 1-Bit One-Time Pad.

Bsp: Verschlüsselung mit RSA-Td-Einwegpermutation

Algorithmus ⊓^{rsa}_{cpa}

Sei Π_{rsa} die RSA Td-Einwegpermutation mit Hardcore-Prädikat hc.

- **9 Gen:** $(N, e, d) \leftarrow GenRSA(1^n)$. Ausgabe pk = (N, e) und sk = (N, d).
- **Enc:** Für $m \in \{0,1\}$ wähle $r \in_R \mathbb{Z}_N^*$ und berechne $c \leftarrow (r^e \mod N, hc(r) \oplus m).$
- **Dec:** Für Chiffretext $c=(c_1,c_2)$ berechne $r:=c_1^d \mod N$ und $m \leftarrow c_2 \oplus hc(r)$.