RUHR-UNIVERSITÄT BOCHUM LEHRSTUHL FÜR KRYPTOLOGIE UND IT-SICHERHEIT Prof. Dr. Alexander May Alexander Meurer, Felix Heuer

Präsenzübungen zur Vorlesung Kryptographie 2 SS 2011

Blatt 2 / 27. und 29. April 2011

AUFGABE 1. Goodbye, Perfekte Sicherheit.

Sei $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ ein Public-Key Verschlüsselungsverfahren für 1-Bit Nachrichten $m \in \{0,1\}$. Zeigen Sie, dass ein unbeschränkter Angreifer zur Eingabe pk und $c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m)$ stets mit Wahrscheinlichkeit 1 den Plaintext m bestimmen kann. (Insbesondere folgt hieraus, das perfekte Sicherheit in der Public-Key Kryptographie ausgeschlossen ist).

Sei im Folgenden $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ ein Public-Key Verschlüsselungsverfahren und $\Pi' = (\mathsf{Gen}', \mathsf{Enc}', \mathsf{Dec}')$ ein symmetrisches Verschlüsselungsverfahren mit n-Bit Schlüsseln $k \in \{0, 1\}^n$. Sei außerdem $\Pi^{\mathsf{hy}} = (\mathsf{Gen}^{\mathsf{hy}}, \mathsf{Enc}^{\mathsf{hy}}, \mathsf{Dec}^{\mathsf{hy}})$ das hybride Verfahren (siehe Folie 32f).

AUFGABE 2. Hybrides: Effizienz.

Zeigen Sie, dass die hybride Verschlüsselung für große Nachrichten m (d.h. |m| >> n) effizienter ist als die direkte Anwendung der mehrfachen Verschlüsselung (siehe Folie 25f). Betrachten Sie hierzu die "Kosten" der Verschlüsselung pro Eingabebit. Definieren Sie hierzu α als die Kosten von $\mathsf{Enc}_{\mathsf{pk}}(k)$ für $k \in \{0,1\}^n$ und β als die Kosten von Enc' je Plaintextbit. Zeigen Sie, dass für $|m| \to \infty$ die Kosten von Π^{hy} gegen die Kosten von Π' konvergieren.

Wir wollen nun Punkt 2 der Beweisskizze zur Sicherheit von Π^{hy} formal beweisen (siehe Folie 35). Wir erinnern uns, dass wir hierzu Π als CPA-sicher und Π' als KPA-sicher annehmen.

AUFGABE 3. Hybrides: Sicherheit.

Beweisen Sie, dass

$$(\mathsf{Enc}_{\mathsf{pk}}(0^n), \mathsf{Enc}'_k(m_0)) \equiv (\mathsf{Enc}_{\mathsf{pk}}(0^n), \mathsf{Enc}'_k(m_1))$$

gilt.

Gehen Sie hierbei wie folgt vor: Sei \mathcal{D} ein Algorithmus, der die obigen Verteilungen mit Vorteil $\varepsilon_{\mathcal{D}}(n)$ unterscheidet, d.h.

$$\varepsilon_{\mathcal{D}}(n) = |\mathbf{Pr}\left[\mathcal{D}(\mathsf{Enc}_{\mathsf{pk}}(0^n), \mathsf{Enc}_k'(m_0)) = 1\right] - \mathbf{Pr}\left[\mathcal{D}(\mathsf{Enc}_{\mathsf{pk}}(0^n), \mathsf{Enc}_k'(m_1)) = 1\right]| \ ,$$

und zeigen Sie, dass $\varepsilon_{\mathcal{D}}(n) \leq \mathsf{negl}(n)$ gilt. Konstruieren Sie hierzu einen Angreifer \mathcal{A}' für das symmetrische Verfahren Π' , welcher \mathcal{D} benutzt.

AUFGABE 4. Algebraisches.

Sei $\mathbb{Z}_N^* = \{x \in \mathbb{Z}_N : \operatorname{ggT}(x, N) = 1\}$ die Einheitengruppe von (\mathbb{Z}_N, \cdot) und sei $\phi(N) = |\mathbb{Z}_N^*|$ die Eulersche Phi-Funktion. Zeigen Sie:

- a) $\phi(p) = p 1$ für jede Primzahl p
- b) $\phi(pq)=(p-1)(q-1)$ für zwei Primzahlen $p\neq q$
- c) Zeigen Sie, dass die Textbook-RSA Verschlüsselung korrekt ist für jede Nachricht $m \in \mathbb{Z}_N^*$. Was passiert, wenn $m \in \mathbb{Z}_N \setminus \mathbb{Z}_N^*$?