Extrablatt Reduktionsbeweise Kryptographie 2 SS 2011

Definition 1. Eine **Hashfunktion** Π ist ein Paar $\Pi = (Gen, H)$ von ppt-Algorithmen mit

- Gen erzeugt zum Sicherheitsparameter 1^n einen Index s (dieser beschreibt eine Funktion H_s). Gen ist probabilistisch.
- H berechnet für jedes s eine Abbildung $H_s: \{0,1\}^{\ell'} \to \{0,1\}^{\ell}$ mit $\ell' > \ell$. H_s ist deterministisch.

Eine Hashfunktion Π heißt kollisionsresistent, wenn für alle ppt-Angreifer \mathcal{A} gilt, dass

$$\Pr\left[\mathsf{HashColl}_{\mathcal{A},\Pi}(n) = 1\right] \le \operatorname{negl}(n)$$
.

Hierbei ist das Spiel HashColl_{A,Π} definiert wie folgt:

- $s \leftarrow \mathsf{Gen}(1^n)$
- $(x, x') \leftarrow \mathcal{A}(s)$
- $\mathsf{HashColl}_{\mathcal{A},\Pi}(n) = \begin{cases} 1 & \text{falls } H_s(x) = H_s(x') \text{ und } x \neq x' \\ 0 & \text{sonst} \end{cases}$

$$\begin{array}{c|c}
\hline
 & \underline{\mathsf{HashColl}_{\mathcal{A},\Pi}(n)} \\
s \leftarrow \mathsf{Gen}(1^n) \\
& \underline{\mathsf{Ausgabe:}} \\
 & 1 & \text{if } H_s(x) = H_s(x') \\
0 & \text{else}
\end{array}$$

$$\begin{array}{c|c}
\hline
 & \underline{\mathcal{A}} \\
& \\
& (x,x') \\
\hline
\end{array}$$
Berechne:
$$x \neq x' \in \{0,1\}^{\ell}$$

AUFGABE 1. Kollisionsresistenz.

Sei $\widetilde{\Pi} = (\widetilde{\mathsf{Gen}}, g)$ mit $g_s : \{0, 1\}^{2\ell} \to \{0, 1\}^{\ell}$ eine kollisionsresistente Hashfunktion. Konstruieren Sie $\Pi = (\mathsf{Gen}, h)$ durch $h_s(x) := (x_1, g_s(x_2) \text{ mit } x_1 \in \{0, 1\}^{\ell} \text{ und } x_2 \in \{0, 1\}^{2\ell}$. Beweisen Sie, dass Π kollisionsresistent ist, indem Sie aus einem Angreifer \mathcal{A} für Π einen Angreifer $\widetilde{\mathcal{A}}$ für $\widetilde{\Pi}$ konstruieren.

AUFGABE 2. Diskreter Logarithmus.

Sei \mathcal{G} ein ppt-Algorithmus, der zur Eingabe 1^n eine zyklische Gruppe G der Ordnung q und einen Generator g erzeugt wobei q Bitlänge n hat. Wir schreiben kurz $(G, g, q) \leftarrow \mathcal{G}(1^n)$.

Zeigen Sie: Wenn CDH hart ist bzgl. \mathcal{G} , so ist auch das diskrete Logarithmus Problem DLog (siehe Folie 15) hart bzgl. \mathcal{G} .