Wiederholung

- Knotenfärbung von Graphen
 - \Box Chromatische Zahl $\chi(G)$
 - Beweis: Jeder planare Graph ist 5-färbbar
 - Vierfarbensatz: Jeder planare Graph ist 4-färbbar.
 - □ Kantenfärbung: $\chi'(G) = \Delta(G)$ oder $\Delta(G)+1$
- Matchings M
 - Heiratsproblem
 - □ Bipartite Graphen G=(A ⊎ B, E)
 - Satz von Hall: $M=|A| \Leftrightarrow |X| \leq |\Gamma(X)|$

Heiratssatz

Satz(Hall): Sei G=(A \uplus B, E) bipartit. G enthält Matching M der Größe |M|=|A| $\Leftrightarrow |\bigcup_{x \in X} \Gamma(x)| =: |\Gamma(X)| \geq |X|$ für alle X \subseteq A.

- " \Rightarrow ": Sei M Matching, |M|=|A|.
- Betrachte G'=(A ⊎ B,M).
- Jedes X ⊆ A hat in G' genau |X| Nachbarn
 ⇒ Jedes X ⊆ A hat in G mindestens |X| Nachbarn.

$|\Gamma(X)| \ge |X| \Rightarrow Matching, |M| = |A|$

Ann.: $G=(A \uplus B, E)$ hat max. Matching M, |M|<|A| $\Rightarrow \exists$ nicht überdecktes $a_1 \in A$ mit Nachbarn b_1 . Existenz von b_1 wegen $|\Gamma(\{a_1\})| \ge 1$.

Algorithmus Augmentierender-Pfad

Eingabe: $G=(A \uplus B, E), M, a_1, b_1$

- 1. $k \leftarrow 1$
- 2. while (b_k wird von M überdeckt)
 - 1. $a_{k+1} \leftarrow Nachbar von b_k im Matching M$
 - b_{k+1} \leftarrow beliebiges $v \in \Gamma(\{a_1,...,a_{k+1}\}) \setminus \{b_1,...,b_k\}$
 - 3. k ← k+1

Ausgabe: augmentierender Pfad $p_a = (a_1, b_1, ..., a_k, b_k)$

- Korrektheit: b_{k+1} existiert wegen $|\Gamma(\{a_1,\ldots,a_{k+1}\})\setminus\{b_1,\ldots,b_k\}|\geq (k+1)-k=1$
- {a_i, b_i} ∉ M für i=1,...,k: k Kanten nicht in M
- {b_i, a_{i+1}} ∈ M für i=1,...,k-1: k-1 Kanten in M
- a₁, b_k nicht überdeckt.
 - \Box Nimm $\{a_i, b_i\}$ in Matching auf und $\{b_i, a_{i+1}\}$ aus Matching raus.
 - M wird um Eins größer (Widerspruch zur Maximalität von M)

20.11.2007

3

Konstruktion eines maximalen Matchings

Algorithmus MaxMatching

Eingabe: G=(A \uplus B, E) mit $|\Gamma(X)| \ge |X|$ für alle X \subseteq A

- \blacksquare M \leftarrow Ø
- while (es gibt nichtüberdeckten a_i ∈ A)
 - □ $b_1 \leftarrow Nachbar von a_i$
 - $p_a = (a_1, b_1, ..., a_k, b_k) \leftarrow Augmentierender-Pfad(G, M, a_1, b_1)$
 - □ for $i \leftarrow 1$ to k
 - $= \mathsf{M} = \mathsf{M} \cup \{\mathsf{a}_{\mathsf{i}},\mathsf{b}_{\mathsf{i}}\}; \mathsf{if}(\mathsf{i} < \mathsf{k}) \; \mathsf{M} = \mathsf{M} \setminus \{\mathsf{b}_{\mathsf{i}},\mathsf{a}_{\mathsf{i}+1}\}$

Ausgabe: Matching M mit |M|=|A|

Korrektheit:

- M wird in jeder Iteration um ein Element vergrößert.
- Nach |A| Iterationen gilt |M|=|A|.

k-reguläre bipartite Graphen

Satz: Sei G=(A ⊎ B, E) ein k-regulärer bipartiter Graph. Dann gilt:

- (1) G besitzt ein perfektes Matching.
- (2) χ '(G) = k.

zu (1): Ann: $\exists X \subseteq A: |\Gamma(X)| < |X|$

- Betrachte Multimenge M=∪_{x∈X} Γ(x) mit |M|=k*|X|
- Verallgemeinertes Schubfachprinzip:
 ∃ b ∈ Γ(X) mit deg(b) ≥ [|M|/|Γ(X)] > k*|X|/|X| = k
 (Widerspruch: G ist k-regulär)

$$\chi$$
'(G) = k

zu (2):

 \blacksquare $|E|=\sum_{a\in A} deg(a) = |A|^*k = \sum_{b\in B} k \Rightarrow |A|=|B|$

Induktion über k

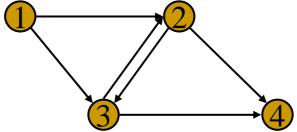
- IA: k=1: G besitzt perfektes Matching E:
 - \Box Jedes $a \in A$ ist mit einem $b \in B$ verbunden.
 - M=E und alle Kanten können mit 1 gefärbt werden.
- IS: k-1 → k
 - G besitzt ein perfektes Matching M.
 - □ $G'=(A \uplus B, E \setminus M)$ ist (k-1)-regulär:
 - G' besitzt (k-1)-Kantenfärbung nach IV.
 - Färbe alle Kanten des Matchings M mit der Farbe k.

Gerichtete Graphen D

Def: Gerichteter Graph oder Digraph D=(V,E) mit

- □ V Menge der Knoten, |V|=n
- □ E ⊆ V×V Menge der gerichteten Kanten, |E|=m

Bsp.: D=([4], (1,2),(1,3),(2,3),(2,4),(3,2),(3,4))



Analog zu ungerichteten Graphen:

- gerichteter Weg (1,2,3,2,4)
- gerichteter Pfad (1,2,3,4) der Länge 3
- Kürzester 1-4-Pfad (1,3,4) der Länge (mittels BFS)
- gerichteter Kreis (2,3) der Länge 2
- $\Gamma(3) = \{2,4\}$

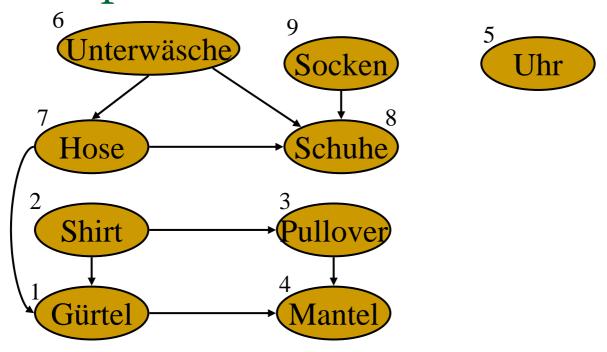
DAG und topologische Sortierung

Def: Ein Digraph D=(V,E) heisst DAG, falls D kreisfreis ist.

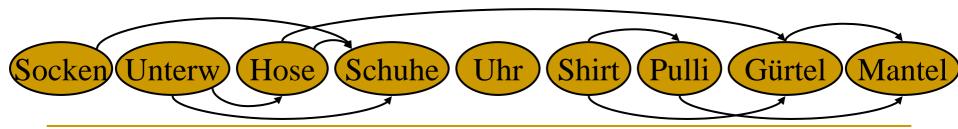
```
Algorithmus Topol-Sort (DFS-Variante)
Eingabe: DAG D=(V,E) in Adjazenzlistendarstellung
      Für alle v \in V
          pred[v] \leftarrow nil; f[v]=0;
  i \leftarrow n; S \leftarrow new Stack;
      while (es gibt unbesuchten Knoten s)
          s ← minimaler unbesuchter Knoten; S.Push(s);
        While (S.Isempty() ≠ TRUE)
        1. v \leftarrow S.Pop():
            1. if (\exists u \in \Gamma(v) \text{ mit pred}[u] = \text{nil}) then
                1. S.Push(v); S.Push(u);
                2. pred[u] \leftarrow v
            2. else if (f[v]=0) then
                1. f[v] \leftarrow i; i \leftarrow i-1;
```

Ausgabe: pred[v], f[v] für alle $v \in V$

Ankleideproblem



Topologische Sortierung



20.11.2007

9

Relationen vs. Graphen

- Sei D=(V,A).
 - \Box A \subset V \times V ist Relation auf V.
- Sei R ⊆ S×S Relation auf S.
 - □ D=(S, R) definiert einen Graphen.

Poset (S, ≤): reflexiv, antisymmetrisch, transitiv

- Definiert DAG (Weglassen der Selbstkanten {v,v}).
- \Box Topologische Sortierung liefert lineare Erweiterung (S, \leq_L):

```
x \leq y \Rightarrow x \leq_{L} y für alle x,y \in S
\Leftrightarrow d[x] \leq d[y] in topologischer Sortierung
```

Starker Zusammenhang

Sei D=(V,E) ein gerichteter Graph.

Def: G=(V,E') mit $\{u,v\} \in E' \Leftrightarrow (u,v) \in E \text{ oder } (v,u) \in E \text{ ist zugrundeliegender Graph von D.}$

Def: D ist stark zusammenhängend

 $\Leftrightarrow \exists$ u-v-Pfad für alle u,v \in V

D ist (schwach) zusammenhängend

⇔ zugrundeliegender Graph G ist zusammenhängend

Algorithmen zum Testen von starkem Zusammenhang:

- Führe DFS für alle Startknoten s∈ V durch: O(n(n+m))
- Verbesserter Algorithmus mit Laufzeit $\mathcal{O}(n+m)$:
 - □ Sei D^r =(V, E^r) mit (u,v) $\in E^r \Leftrightarrow (v,u) \in E$
 - Anwendung von DFS auf D und D^r genügt (Beweis nicht-trivial).

Transitive Hülle

Algorithmus Simple-Transitiv

Eingabe: Relation R auf S

- while $(\exists x,y,z \text{ mit } (x,y),(y,z) \in R \text{ und } (x,z) \notin R)$ do
 - 1. $R \leftarrow R \cup \{(x,z)\}$

Ausgabe: Transitive Hülle R+ = R

Korrektheit: klar

Laufzeit $\mathcal{O}(|S|^5)$:

- $|R^+| \le |S|^2$
- In jeder Iteration wird eine "Kante" (x,z) hinzugefügt.
- Überprüfung der while-Bedingung in $\mathcal{O}(|S|^3)$:
 - R in Adjazenzmatrixdarstellung (r_{ii})
 - □ Überprüfe für jedes x,y,z ob $r_{xy}=1$ und $r_{yz}=1$ und $r_{xz}=0$.

Mittels Dynamischer Programmierung

Sei D=(V,E). Transitive Hülle D+=(V,E+) von D hat die Kantenmenge E+ = {(u,v) \in V \times V | \exists u-v-Pfad in D}.

Definieren $W_k[i,j] =$

- 1, falls ∃ i-j-Pfad mit inneren Knoten aus {1,...,k}
- 0, sonst
- Initiale Werte: W₀[i,j] = 1 ⇔ (i,j) ∈ E
- Finale Werte: W_n[i,j] = 1 ⇔ (i,j) ∈ E⁺

Iterative Berechnung

Berechnung von $W_k[i,j]$ aus $W_{k-1}[i,j]$:

```
W_k[i,j] = 1:
```

- □ ∃ i-j-Pfad mit inneren Knoten aus {1,...,k-1}
- □ ∃ i-k-Pfad und k-j-Pfad mit inneren Knoten aus {1,...,k-1}
- $\Rightarrow W_{k}[i,j] = \max\{W_{k-1}[i,j], W_{k-1}[i,k] * W_{k-1}[k,j]\}$

Algorithmus von Warschall

Algorithmus von Warschall

```
Eingabe: D=(V,E)
1. for i=1 to n
1. if (i,j)∈ E then W[i,j] ← 1;
2. else W[i,j] ← 0;
2. for k=1 to n
1. for i=1 to n
1. for j=1 to n
1. W[i,j] ← max{W[i,j], W[i,k]*W[k,j]}
Ausgabe: E+ ←{(i,j) | W[i,j]=1}
```

Analyse von Warschalls Algorithmus

Satz: Warschalls Algorithmus berechnet die transitive Hülle eines Graphen in Zeit $\mathcal{O}(n^3)$.

Korrektheit:

```
    W<sub>k</sub>[i,j] = max{W<sub>k-1</sub>[i,j], W<sub>k-1</sub>[i,k] * W<sub>k-1</sub>[k,j]} und
    W<sub>k-1</sub>[i,k]=1 ⇔ W<sub>k</sub>[i,k]=1 bzw. W<sub>k-1</sub>[k,j]=W<sub>k,j</sub>:
        "⇒": klar
        "←": ∃ p=(i,v<sub>1</sub>,...,v<sub>r</sub>=k) mit inneren Knoten aus {1,...,k}.
        Pfadeigenschaft: v<sub>i</sub> ≠ v<sub>r</sub>=k für i<r
        ⇒ p ist i-j-Pfad mit inneren Knoten v<sub>1</sub>,...,v<sub>r-1</sub> ∈ {1,...,k-1}
```

Laufzeit: $\mathcal{O}(n^3)$

Wurzelbäume

Sei T=(V,E) ein Baum.

- T_v bezeichne Baum mit Wurzel v.
- Von jedem Knoten u∈V gibt es genau einen

```
u-v-Pfad = (u,v_1,...,v_k=v)
```

- □ V₁,...,V_k sind Vorgänger von u
- □ v₁ ist Elternknoten bzw. Vaterknoten von v.
- u hat Tiefe k im Baum T_v
- □ Höhe h(T_v) = max_{u ∈ V}{Tiefe von u in T_v}
- Knoten mit gleichem Elternknoten heißen Geschwisterknoten
- Knoten w mit w-u-Pfad heissen
 - Nachfolger von u
 - Falls (w,u) in E, nennt man w ein Kind von u.

Binärbäume

- Binärbaum: Jeder Knoten hat höchstens zwei Kinder.
- Vollständiger Binärbaum:
 Jedes Nichtblatt hat zwei Kinder, Blätter haben gleiche Tiefe.

Realisierung vollständiger Binärbäume als Array:

- Knoten in Tiefe t erhalten Indizes 2^t,..., 2^{t+1}-1
- Knoten i:
 - linkes Kind: 2i
 - rechtes Kind: 2i+1
 - Vater: [i/2]
- Sei h die Höhe des Baums.

Verwendung von Arraydarstellung z.B. bei Heapsort.

Binäre Suchbäume

Sei T=(V,E) mit $V \subseteq \mathbb{Z}$ beliebig.

Def: Ein Binärbaum T_w heisst Suchbaum, wenn für alle $v \in V$ gilt:

- □ Für alle Knoten u_i im linken Teilbaum von v: $u_i \le v$.
- □ Für alle Knoten u_r im rechten Teilbaum von v: $u_r \ge v$.

Algorithmus Suche-Element

Eingabe: Suchbaum T_w, u

- while ($w \neq u$ und w ist kein Blatt)
 - if $u \le w$ then $w \leftarrow linkes Kind von w.$
 - 2. else w ← rechtes Kind von w.

Ausgabe: "u gefunden", falls w=u und "u nicht gefunden" sonst

Laufzeit: $\mathcal{O}(h(T_w))$

- Verschiedene Strategien, um $h(T_w) = \mathcal{O}(\log n)$ zu erzwingen
 - Höhen- und gewichtsbalancierte Bäume, Rot-Schwarz-Bäume, etc.