Kryptanalyse Teil II

Alexander May

Fakultät für Mathematik Ruhr-Universität Bochum

Wintersemester 2012/13

Kryptanalyse II 1 / 119

Pollards (p-1)-Methode

Szenario:

- Sei N = pq und p 1 zerfalle in kleine Primfaktoren, q 1 nicht.
- D.h. es existieren Schranken B_1 , B_2 moderater Größe, so dass $p-1=\Pi_i p_i^{e_i}$ mit $p_i \leq B_1$ und $p_i^{e_i} \leq B_2$.

Idee:

- Für jedes $a \in \mathbb{Z}_N^*$ und jedes Vielfache k von p-1 gilt $a^k \equiv 1 \mod p$.
- Falls $a^k \not\equiv 1 \mod q$, dann erhalten wir $ggT(N, a^k 1) = p$.

Algorithmus Pollards p-1-Methode

EINGABE: N = pq

- **○** Wähle Schranken $B_1, B_2 \in \mathbb{N}$. Wähle $a \in_R \mathbb{Z}_N^*$.
- 2 Für alle Primzahlen $p_i \leq B_1$:
 - **1** Berechne $a := a^{p_i^{e_i}} \mod N$, so dass e_i maximal ist mit $p_i^{e_i} \leq B_2$.
- **③** Falls $ggT(a^k 1, N) \notin \{1, N\}$, Ausgabe des ggTs.
- AUSGABE: p, $q = \frac{N}{p}$ oder Kein Faktor gefunden.

Korrektheit der (p-1)-Methode

Satz Korrektheit der (p-1)-Methode

Sei N=pq und $B_1,B_2\in\mathbb{N}$, so dass p-1 B_1 -glatt ist mit Primpotenzen beschränkt durch $B_2,\ q-1$ jedoch nicht B_1 -glatt ist. Dann berechnet die (p-1)-Methode p in Zeit $\mathcal{O}(B_1\log^3N)$ mit Erfolgsws mind. $1-\frac{1}{B_1}$.

Beweis:

- Wir definieren $k := \prod_{\text{Primzahlen } p_i \leq B_1} p_i^{e_i}$.
- Da q-1 nicht B_1 -glatt, existiert ein Primfaktor $r \mid q-1$ mit $r > B_1$.
- Falls $r \mid \operatorname{ord}_{\mathbb{Z}_q^*}(a)$, so gilt $\operatorname{ord}_{\mathbb{Z}_q^*}(a) \nmid k$ und damit $a^k \not\equiv 1 \bmod q$.
- Andererseits ist k aber ein Vielfaches von p-1.
- Daher gilt $a^k \equiv 1 \mod p$ und es folgt $ggT(a^k, N) = p$.
- Bleibt zu zeigen, dass $r \mid \operatorname{ord}_{\mathbb{Z}_q^*}(a)$ mit hoher Ws für $a \in_{\mathcal{R}} \mathbb{Z}_N^*$.
- Da \mathbb{Z}_q^* zyklisch, gilt $\mathbb{Z}_q^* = \{\alpha^1, \dots, \alpha^{q-1}\}$ für einen Generator α .
- D.h. $(a \bmod q) \equiv \alpha^i$ für ein $i \in_R [q-1]$ und α^i besitzt $ord_{\mathbb{Z}_q^*}(\alpha^i) = \frac{q-1}{\operatorname{ort}(i,q-1)}$. (Übung)

Korrektheit der p-1-Methode

Beweis: (Fortsetzung)

- Ein Faktor r wird in $ord_{\mathbb{Z}_n^*}(\alpha^i)$ eliminiert gdw i Vielfaches von r ist.
- Dies geschieht mit Ws $\frac{1}{r}$. D.h. r verbleibt in $ord_{\mathbb{Z}_n^*}(\alpha^i)$ mit Ws $1 - \frac{1}{r} > 1 - \frac{1}{R_{\star}}$.

Laufzeit: Es gibt sicherlich höchstens
$$B_1$$
 Primzahlen $< B_2$

- Laufzeit: Es gibt sicherlich höchstens B_1 Primzahlen $\leq B_1$.
- Wegen $p_i^{e_i} = \mathcal{O}(B_2) = \mathcal{O}(N)$, kann $a^{p_i^{e_i}} \mod N$ in jeder Iteration von Schritt 2 in Zeit $\mathcal{O}(\log^3 N)$ berechnet werden.
- Damit benötigen wir für $a^k 1 \mod N$ Gesamtzeit $\mathcal{O}(B_1 \log^3 N)$.

Problem der (p-1)-Methode

- Erfolgsws und Laufzeit sind abhängig von der Ordnung von \mathbb{Z}_p^* .
- Falls $\frac{p-1}{2}$ prim ist, so benötigen wir $B_1 \approx p$.
- D.h. in diesem Fall ist die Laufzeit nicht besser als Brute-Force.
- Ausweg: Bei elliptischen Kurven E variiert die Ordnung von $E \mod p$ in einem großen Intervall, in dem glatte Zahlen liegen.

Elliptische Kurven

Definition Elliptische Kurve

Sei $p \neq 2,3$ prim, $f(x) = x^3 + ax + b \in \mathbb{Z}_p[x]$, $4a^3 + 27b^2 \not\equiv 0 \bmod p$. Wir definieren die Menge der Punkte auf einer *elliptischen Kurve* als

$$E := E[p] = \{(x,y) \in \mathbb{Z}_p^2 \mid y^2 \equiv f(x) \bmod p\} \cup \{\mathbf{0}\},\$$

wobei O der Punkt im Unendlichen heißt.

Anmerkungen:

- Die Bedingung $4a^3+27b^2$ ist äquivalent zu der Forderung, dass f(x) in \mathbb{Z}_p^* keine mehrfachen Nullstellen besitzt. (Übung)
- Für jeden Punkt P = (x, y) auf E liegt auch (x, -y) auf E.
- Wir definieren -P = (x, -y).
- Für $P = \mathbf{O}$ definieren wir $-P = \mathbf{O}$ und $\mathbf{O} + \mathbf{Q} = \mathbf{Q}$ für alle \mathbf{Q} auf \mathbf{E} .

Addition von Punkten

Algorithmus Addition von Punkten auf E[p]

EINGABE: $p, P = (x_1, y_1), Q = (x_2, y_2)$ auf E mit $P, Q \neq \mathbf{0}$

- Falls $x_1 \equiv x_2 \mod p$ und $y_1 \equiv -y_2 \mod p$, Ausgabe O.
- Setze $\alpha := \begin{cases} \frac{y_2 y_1}{x_2 x_1} & \text{für } x_1 \not\equiv x_2 \bmod p \\ \frac{3x_1^2 + a}{2y_1} & \text{für } x_1 \equiv x_2 \bmod p \end{cases}$. Setze $\beta \equiv y_1 \alpha x_1 \bmod p$.
- **3** Berechne $x_3 \equiv \alpha^2 x_1 x_2 \mod p$ und $y_3 \equiv -(\alpha x_3 + \beta) \mod p$.

AUSGABE: $P + Q = (x_3, y_3)$

Anmerkungen:

- Sei $P \neq Q$. Wir betrachten die Gerade G durch P, Q.
- Falls Q = -P, so liegt G parallel zur y-Achse. Wir definieren

$$P + (-P) = \mathbf{0}.$$

- Sonst ist G definiert durch $y = \alpha x + \beta$ mit Steigung $\alpha = \frac{y_2 y_1}{x_2 x_1}$.
- Für P = Q besitzt die Tangente im Punkt P Steigung $\alpha = \frac{3x_1^2 + a}{2Ve}$.

Addition von Punkten

Lemma Addition von Punkten auf E

Seien P, Q auf E mit $P \neq -Q$. Dann schneidet die Gerade durch P, Q die Kurve E in einem dritten Punkt R mit -R := P + Q.

Beweis:

- Wir zeigen nur $P \neq Q$. Der Beweis für P = Q folgt analog.
- Wie zuvor setzen wir $P = (x_1, y_1), Q = (x_2, y_2)$ und $R = (x_3, y_3)$.
- Sei G die Gerade $y = \alpha x + \beta$ durch P, Q. Dann gilt für i = 1, 2 $(\alpha x_i + \beta)^2 = x_i^3 + ax_i + b$.
- x_1, x_2 sind damit Nullstellen des Polynoms $g(x) = x^3 \alpha^2 x^2 + \dots$
- Das Polynom g(x) besitzt damit genau 3 Nullstellen $g(x) = (x x_1)(x x_2)(x x_3) = x^3 (x_1 + x_2 + x_3)x^2 + \dots$
- Durch Koeffizientenvergleich folgt $x_1 + x_2 + x_3 = \alpha^2$.
- Wir erhalten $y_3 = \alpha x_3 + \beta$ und damit $-R = (x_3, -y_3)$.

Eigenschaften der Addition auf E

Korollar Effizienz der Addition

Sei E[p] eine elliptische Kurve mit Punkten P, Q. Dann kann P+Q in Laufzeit $\mathcal{O}(\log^2 p)$ berechnet werden.

• Wir benötigen nur Addition, Multiplikation und Division in \mathbb{Z}_p .

Satz von Mordell

Jede elliptische Kurve *E* bildet mit der definierten Addition eine abelsche Gruppe.

Beweis:

- Abgeschlossenheit: P + Q liefert wieder einen Punkt auf E.
- Neutrales Element ist der Punkt O.
- Inverses von $P \neq \mathbf{0}$ ist -P und $-\mathbf{0} = \mathbf{0}$.
- Abelsch: Berechnung von G unabhängig von Reihenfolge P, Q.
- Assoziativität kann durch Nachrechnen gezeigt werden.

Gruppenordnung einer elliptischen Kurve

Satz von Hasse (1933)

Sei E eine elliptische Kurve über \mathbb{F}_p . Dann gilt

$$|E| \leq p+1+t \text{ mit } |t| \leq 2\sqrt{p}.$$

Anmerkungen: (ohne Beweis)

- Sei $x \in \mathbb{Z}_p$ und $f(x) = x^3 + ax + b$.
- Falls f(x) ein quadratischer Rest modulo p ist, dann existieren genau zwei Lösungen $\pm y$ der Gleichung $y^2 \equiv f(x) \bmod p$, d.h. (x,y) und (x,-y) liegen in E.
- Falls f(x) ein Nichtrest ist, besitzt E keinen Punkt der Form (x, \cdot) .
- Genau die Hälfte aller Elemente in \mathbb{Z}_p^* ist ein quadratischer Rest.
- Falls $x \mapsto f(x)$ sich zufällig verhält auf \mathbb{Z}_p , erwarten wir $\frac{p}{2} \cdot 2 = p$ Punkte. Hinzu kommt der Punkt **O**, d.h. $|E| \approx p + 1$.
- Der Satz von Hasse besagt, dass sich $x \mapsto f(x)$ ist fast zufällig verhält mit einem Fehlerterm von $|t| \le 2\sqrt{p}$.

Verteilung und Berechnung der Gruppenordnung

Satz von Deuring

Sei $p \neq 2,3$ prim. Für jedes $t \in \mathbb{Z}$, $|t| \leq 2\sqrt{p}$ ist die Anzahl der elliptischen Kurven E modulo p mit |E| = p + 1 + t Punkten $\Omega\left(\frac{p^{\frac{3}{2}}}{\log p}\right)$.

Anmerkungen: (ohne Beweis)

- Die Anzahl aller Kurven E modulo p beträgt $p^2 p$. (Übung)
- Es gibt $4\sqrt{p} + 1$ viele $t \in \mathbb{Z}$ mit $|t| \le 2\sqrt{p}$.
- D.h. für jedes feste t gibt es durchschnittlich $\frac{p^2-p}{4\sqrt{p}+1}=\Omega(p^{\frac{3}{2}})$ elliptische Kurven E mit Ordnung |E|=p+1+t.
- Satz von Deuring: Durchschnittsargument korrekt bis auf log p.
- Sei *E* definiert mittels zufällig gewählter $(a,b) \in \mathbb{Z}_p^2$, $4a^3 \not\equiv -27b^2$.
- Dann ist |E| fast uniform verteilt in $[p+1-2\sqrt{p},p+1+2\sqrt{p}]$.

Satz von Schoof (1985)

Für E modulo p kann |E| in Zeit $\mathcal{O}(\log^8 p)$ berechnet werden.