Wiederholung

Gruppen

- Ordnung: Gruppe, Element
- □ Satz von Euler: a^{ord(G)} = 1
- Elementordung teilt Gruppenordnung

Untergruppen

- Satz von Lagrange
 - Untergruppenordnung teilt Gruppenordnung
- Nebenklassen von Untergruppen
- Faktorgruppe: G/H

Gruppenisomorphismen

□ Jede zykl. Gruppe mit m Elementen ist isomorph zu (\mathbb{Z}_m , +).

Beispiel: Faktorgruppe ($\mathbb{Z}/m\mathbb{Z},+$)

- $m\mathbb{Z}=\{0, \pm m, \pm 2m, \ldots\}$ ist additive Untergruppe von \mathbb{Z} .
- Verschiedene Nebenklassen von mZ:
 - □ $0 + m\mathbb{Z} = m\mathbb{Z}$ □ $1 + m\mathbb{Z} = \{1, 1 \pm m, 1 \pm 2m, ...\}$ □ $2 + m\mathbb{Z} = \{2, 2 \pm m, 2 \pm 2m, ...\}$...
 □ $m-1 + m\mathbb{Z} = \{m-1, m-1\pm m, m-1\pm 2m, ...\}$
- Faktorgruppe (Z/mZ, +):
 - \square $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$, (a+m \mathbb{Z} , b+m \mathbb{Z}) \mapsto (a+b) + m \mathbb{Z}
 - \Box (a+b) + m \mathbb{Z} = (a+b mod m) + m \mathbb{Z}
 - □ Isomorphismus ($\mathbb{Z}/m\mathbb{Z}$,+) \cong (\mathbb{Z}_m ,+): f: $\mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}_m$, a+m $\mathbb{Z} \mapsto$ a mod m

Komplexität modularer Arithmetik

Ziel: Berechne c=a+b mod m für a,b $\in \mathbb{Z}_m$ mit $2^{n-1} \le m < 2^n$.

Bitdarstellung:

Schreibe $a = \sum_{i=0}^{n-1} a_i 2^i$ als Bitstring $a_{n-1}a_{n-2}...a_0$ der Länge n

Algorithmus Addition:

Eingabe: $a=a_{n-1}...a_0$, $b=b_{n-1}...b_0$, $m=m_{n-1}...,m_0$

- 1. $c \leftarrow Bitweise Addition von a,b mit Übertrag beginnend mit <math>a_0, b_0$.
- If (c > m) then $c \leftarrow$ Bitweise Subtraktion c-m

Ausgabe: $c=c_n...c_0$

Korrektheit: klar

Laufzeit: $\mathcal{O}(n) = \mathcal{O}(\log m)$

Komplexität der Multiplikation

Ziel: Berechne c=a*b mod m

Algorithmus Multiplikation-Schulmethode

Eingabe:
$$a=a_{n-1}...a_0$$
, $b_{n-1}...b_0$, $m=m_{n-1}...m_0$

- 1. $c \leftarrow 0$; hilf $\leftarrow b$;
- 2. for $i \leftarrow 0$ to n-1
 - if $(a_i = 1)$ then $c \leftarrow c + hilf \mod m$;
 - 2. hilf \leftarrow 2*hilf mod m;

Ausgabe: $c=c_{n-1}...c_0$

Korrektheit: klar

Laufzeit: $n^*\mathcal{O}(n) = \mathcal{O}(n^2) = \mathcal{O}(\log^2 m)$

Rekursive Multiplikation

Vereinfachende Annahme: n=2k

- Schreiben $a = A_1 * 2^{n/2} + A_0$ mit $A_1 = \sum_{i=n/2}^{n-1} a_i 2^i$, $A_0 = \sum_{i=0}^{n/2-1} a_i 2^i$
- a * b = $(A_1*2^{n/2}+A_0)(B_1*2^{n/2}+B_0)$ = $A_1B_1*2^n + (A_1+B_0)(A_0+B_1)*2^{n/2} + A_0B_0$ = $A_1B_1*2^n + ((A_0+A_1)(B_0+B_1)-(A_0B_0+A_1B_1))*2^{n/2} + A_0B_0$
- 1 Multiplikation von n-Bit Zahlen zurückgeführt auf:
 - 3 Multiplikationen von n/2-Bit Zahlen
 - 6 Additionen + 2 Shifts
 - □ Rekursionsgleichung: 3*T(n/2) + c*n für konstantes c und $T(1)=\mathcal{O}(1)$.

Laufzeitanalyse

```
T(n) = 3*T(n/2) + c*n
= 3*(3*T(n/4) + c*n/2) + c*n = 3^2*T(n/4) + cn(1+3/2)
= 3^2*(3*T(n/8) + c*n/4) + cn(1+3/2)
= 3^3*T(n/8) + cn(1+3/2+3^2/4) = ...
= 3^i*T(n/2^i) + cn\sum_{i=0}^{i-1} (3/2)^i
```

Abbruch für n=2ⁱ, d.h. i=log₂ n:

Wir lernen bald ein Verfahren mit asymptotischer Laufzeit: $\mathcal{O}(n \log \log \log n) = \mathcal{O}(n^{1+\epsilon})$ für jedes $\epsilon > 0$

Schnelle Exponentiation

- Ziel: Berechne c = a^b mod m mit b<m<2ⁿ
- Beachte: (b-1)-malige Multiplikation hat Laufzeit $\mathcal{O}(bn^2) = \mathcal{O}(2^nn^2)$, d.h. exponentiell in der Bitlänge n

Algorithmus Square and Multiply

Eingabe:
$$a=a_{n-1}...a_0$$
, $b=b_{n-1}...b_0$

- 1. c ← 1
- for i=0 to n-1
 - if $(b_i=1)$ then $c \leftarrow c^*a \mod m$
 - 2. $a \leftarrow a^2 \mod m$

Ausgabe: c

Korrektheit:
$$a^b = a^{\sum_{i=0}^{n-1} b_i 2^i} = \prod_{i=0}^{n-1} a_i^{b_i 2^i} = \prod_{i=0}^{n-1} \left(a_i^{2^i}\right)^{b_i}$$

Laufzeit: n Iterationen mit Laufzeit $\mathcal{O}(n^2)$: Gesamtlaufzeit $\mathcal{O}(n^3) = \mathcal{O}(\log^3 m)$

Kleiner Satz von Fermat

Satz von Euler: Sei G eine multiplikative Gruppe mit neutralem Element 1. Dann gilt für alle a ∈ G:

$$a^{|G|} = 1.$$

Kleiner Satz von Fermat: Sei p prim. Dann gilt für alle $a \in \mathbb{Z}_p^*$: $a^{p-1} = 1 \mod p$.

Beweis: $|\mathbb{Z}_p^*| = p-1$.

Korollar: Sei p prim. Dann gilt für alle $a \in \mathbb{Z}_p$:

 $a^p = a \mod p$.

- Gleichung gilt für alle $a \in \mathbb{Z}_p^*$ nach Kleinem Satz von Fermat:
- Für a=0 gilt 0^p = 0.

Rückrichtung

Die umgekehrte Aussage

$$\forall$$
 a $\in \mathbb{Z}_p^*$: $a^{p-1}=1 \mod p \Rightarrow p$ prim gilt **nicht!**

- Carmichael Zahlen
 - □ C = {n | n zusammengesetzt, $a^{n-1}=1$ für alle $a \in \mathbb{Z}_n^*$. }
 - \Box C = {561, 1105, 1729, ...}
 - $|C| = \infty$ (Beweis 1994)

Fermatsche Pseudoprimzahlen

Sei n zusammengesetzt.

n heisst Fermatsche Pseudoprimzahl zur Basis a $\in \mathbb{Z}_n^*$ falls $a^{n-1}=1 \mod n$.

Satz: Sei $n \in \mathbb{N}$ zusammengesetzt, keine Carmichael-Zahl. Dann ist n Pseudoprimzahl zu höchstens der Hälfte aller Basen $a \in \mathbb{Z}_n^*$.

- U={a ∈ \mathbb{Z}_n^* | aⁿ⁻¹=1 mod n} Untergruppe von \mathbb{Z}_n^*
 - □ Abgeschlossenheit: $a,b \in U \Rightarrow (ab)^{n-1} = a^{n-1} * b^{n-1} = 1 \mod n$.
 - □ Neutrales Element: $1 \in U$.
 - □ Inverses Element zu a∈ U ist aⁿ⁻²:
 - a * $a^{n-2} = a^{n-1} = 1 \mod n$.
 - $a^{n-2} \in U$, denn $(a^{n-2})^{n-1} = (a^{n-1})^{n-2} = 1 \mod n$.
- Da n keine Carmichael-Zahl ist, gilt U ≠ Z_n*.
- Satz von Lagrange:

$$|\mathsf{U}|^*|\mathsf{ind}_\mathsf{U}(\mathbb{Z}_n^{\;*})| = |\mathbb{Z}_n^{\;*}|, \quad \mathsf{d.h.} \; |\mathsf{ind}_\mathsf{U}(\mathbb{Z}_n^{\;*})| \geq 2, \; \mathsf{bzw.} \; |\mathsf{U}| \leq \frac{1}{2} |\mathbb{Z}_n^{\;*}|$$

Primzahltest für Nicht-Carmichaelzahlen

Algorithmus Fast-Primtest

Eingabe: n, $k \in \mathbb{N}$, n keine Carmichaelzahl

- for i=1 to k
 - 1. Wähle $a \in \mathbb{Z}_n \setminus \{0\}$ zufällig
 - Falls ggT(a, n) > 1 Ausgabe "n zusammengesetzt".
 - Falls aⁿ⁻¹ ≠ 1 mod n Ausgabe "n zusammengesetzt".
- Ausgabe "n prim".
- Laufzeit: $\mathcal{O}(k \log^3 n) = \mathcal{O}(\log^3 n)$ für konstantes k
- In der Praxis: k=80 genügt.

Korrektheit

- Falls n prim:
 - Ausgabe ist stets "n prim".
- Falls n zusammengesetzt:
 - Manchmal fehlerhafte Ausgabe "n prim".
 - □ Für alle a ∈ $\mathbb{Z}_n \setminus \mathbb{Z}_n^*$: Ausgabe korrekt.
 - Falls n keine Pseudoprimzahl zur Basis a: Ausgabe korrekt.
 - a ist Zeuge f
 ür Zusammengesetztheit von n.
 - Pro Iteration:
 - Ws(Ausgabe "n zusammengesetzt" | n zusammengesetzt) ≥ ½
 - Nach k Iterationen:
 - ϵ' = Ws(Ausgabe "n prim" | n zusammengesetzt)
 - = $(1 Ws(Ausgabe ,n zusammengesetzt" | n zusammengesetzt))^k \le 2^{-k}$
- Fehlerwahrscheinlichkeit:
 - $_{ extsf{ iny C}}$ ϵ = Ws(n zusammengesetzt | Ausgabe "n prim") $pprox \epsilon$ "

Chinesischer Restsatz

Spezieller CRT-Satz: Seien m,n $\in \mathbb{N}$ teilerfremd.

Dann existiert genau eine Lösung x mod mn des Gleichungssystems

$$x = a \mod m$$

 $x = b \mod n$

Existenz:

- EEA liefert r,s mit mr + ns = 1 ⇒ mr = 1 mod n und ns = 1 mod m
- Sei x = ans + bmr mod mn.

 \Rightarrow x = a mod m und x = b mod n

Eindeutigkeit mod mn: Sei x' zweite Lösung.

- $x = a = x' \mod m \text{ und } x = b = x' \mod n$
 - \Rightarrow m | x-x' und n | x-x'
 - ⇒ mn | x-x' (wegen m,n teilerfremd)
 - \Rightarrow x = x' mod mn