Klausurtermin

Klausur Diskrete Mathematik I

- Do. 28.02.2008
- 3-stündig

Wiederholung

- Komplexität modularer Arithmetik
 - \square Addition: $\mathcal{O}(n)$
 - □ Multiplikation: $\mathcal{O}(n^2)$ bzw. $\mathcal{O}(n^{\log_2 3})$
 - □ Exponentiation: $\mathcal{O}(n^3)$ bzw. $\mathcal{O}(n^{1+\log_2 3})$
- Kleiner Satz von Fermat
 - Carmichael-Zahlen
 - Probabilistischer Primzahltest außer für Carmichael-Zahlen
- Chinesischer Restsatz

Chinesischer Restsatz

Spezieller CRT-Satz: Seien m,n $\in \mathbb{N}$ teilerfremd.

Dann existiert genau eine Lösung x mod mn des Gleichungssystems

$$x = a \mod m$$

 $x = b \mod n$

Existenz:

- EEA liefert r,s mit mr + ns = 1
 ⇒ mr = 1 mod n und ns = 1 mod m
- Sei x = ans + bmr mod mn.
 - \Rightarrow x = a mod m und x = b mod n

Eindeutigkeit mod mn: Sei x' zweite Lösung.

- x = a = x' mod m und x = b = x' mod n
 - \Rightarrow m | x-x' und n | x-x'
 - ⇒ mn | x-x' (wegen m,n teilerfremd)
 - \Rightarrow x = x' mod mn

Allgemeiner Chinesischer Restsatz

CRT-Satz: Seien $m_1, m_2, ..., m_n \in \mathbb{Z}$ teilerfremd.

Dann existiert genau eine Lösung x mod m₁*...*m_n des Gleichungssystems

Induktion über n:

IA: n=2: spezieller CRT-Satz

IS: $n-1 \rightarrow n$:

- Induktionshypothese liefert eindeutige Lösung y mod m₁*...*m_{n-1}
- Berechnen mit speziellem CRT-Satz eindeutige Lösung x von

$$\begin{vmatrix} x &= y \mod m_1 * \dots * m_{n-1} \\ x &= a_n \mod m_n \end{vmatrix}$$

1. CRT-Isomorphismus

Satz: Sei N= $m_1^*...^*m_n$ für teilerfremde m_i . Dann gilt: $\mathbb{Z}_N \cong \mathbb{Z}_{m_1} \times ... \times \mathbb{Z}_{m_n}$.

- Betrachten f: $\mathbb{Z}_N \rightarrow \mathbb{Z}_{m_1} \times ... \times \mathbb{Z}_{m_n}$, $x \mod N \mapsto (x \mod m_1, ..., x \mod m_n)$
- f ist bijektiv:
 - □ f ist injektiv nach CRT-Satz und $|\mathbb{Z}_N| = N = m_1^*...^*m_n = |\mathbb{Z}_{m_1}|^*...^*|\mathbb{Z}_{m_n}|$
- f ist Homomorphismus, denn
 - $f(x + y) = ((x+y \mod N) \mod m_1, ..., (x+y \mod N) \mod m_n)$ $= (x+y \mod m_1, ..., x+y \mod m_n)$ = f(x) + f(y)
- Damit ist f ein Isomorphismus.
- f ist effizient berechenbar, f⁻¹ ebenfalls mit CRT-Konstruktion.

Korollar: Sei $N=m_1^*...^*m_n$ für teilerfremde m_i . Dann gilt für alle $x,a\in\mathbb{Z}$: $x=a \mod N \Leftrightarrow x=a \mod m_i$ für $1\leq i\leq n$.

2. CRT-Isomorphismus

Satz: Sei $N=m_1^*...^*m_n$ für teilerfremde m_i . Dann gilt:

$$\mathbb{Z}_{\mathsf{N}}^{\phantom{\mathsf{N}}^{\ast}} \cong \mathbb{Z}_{\mathsf{m_1}}^{\phantom{\mathsf{m_1}}^{\ast}} \times \ldots \times \mathbb{Z}_{\mathsf{m_n}}^{\phantom{\mathsf{m_n}}^{\ast}}.$$

- Selber Isomorphismus f wie zuvor.
- ggT(a,N)=1 ⇒ ax+ny =1
 ⇒ ax+m₁*...*m_ny = 1
 ⇒ ggT(a,m_i)=1 für 1≤ i ≤ n
- Rückrichtung ggT(a,m_i)=1 für 1≤ i ≤ n ⇒ ggT(a,N)=1 folgt aus dem Satz zur Teilerfremdheit.
- $|\mathbb{Z}_N^*| = \phi(N) = \phi(m_1^*...^*m_n) = \phi(m_1)^*...^*\phi(m_n) = |\mathbb{Z}_{m_1}^*|^*...^*|\mathbb{Z}_{m_n}^*|$ für teilerfremde m_i (Übungsaufgabe)

Anzahl Nullstellen modularer Gleichungen

Satz: Sei $N=p_1^{e_1}*...*p_k^{e_k}$, $p_i^{e_i}>2$, paarweise teilerfremd. Dann existieren 2^k Lösungen der Gleichung $x^2=1$ mod N in \mathbb{Z}_N^* .

- $x^2=1 \mod N \Leftrightarrow x^2=1 \mod p_i e_i \text{ für } 1 \leq i \leq k.$
- x=±1 sind Lösungen für jede Gleichung x²=1 mod p_ie_i
 - □ -1= $p_i e_i$ -1 ≠ 1 mod $p_i e_i$ wegen $p_i e_i \ge 2$.
- D.h. (x mod $p_1e_1,...,x$ mod p_ke_k) $\in \{-1,1\}^k$ sind Lösungen
 - 2^k verschiedene Vektoren
 - 2^k verschiedene Lösungen nach CRT-Satz

Korollar: Sei N=pq, p,q teilerfremd. Dann existieren vier Lösungen der Gleichung $x^2=1 \mod N$ in \mathbb{Z}_N^* .

Faktorisieren mit nicht-trivialen Wurzeln

Satz: Sei N=pq mit teilerfremden p,q > 2. Sei x $\neq \pm$ 1 eine Lösung von x² = 1 mod N. Dann kann die Faktorisierung von N in die Faktoren p,q in Zeit $\mathcal{O}(\log^2 N)$ bestimmt werden.

- $x^2 = 1 \mod N$ besitzt die Wurzeln 1=(1,1), -1=(-1,1), (1,-1) und (-1,1).
- ObdA sei x=(1,-1), d.h. x=1 mod p, x=-1 mod q.
 ⇒ x-1 = 0 mod p und x-1 = -2 mod q (x-1 ≠ 0 mod q wegen q ≠ 2)
 ⇒ ggT(N,x-1)=p
- Analog gilt ggT(N, x+1)=q

Bemerkung: Alle modernen Faktorisierungsalgorithmen (Quadratisches Sieb, Zahlkörpersieb) suchen nach nicht-trivialen Wurzeln der 1 mod N.

RSA-Verfahren

Alice besitzt

- öffentliche Parameter: N=pq, p,q prim und $e \in \mathbb{Z}^*_{\phi(N)}$
- ullet geheimen Parameter: d $\in {\mathbb Z}^*_{\phi({\mathsf N})}$

Algorithmus Schlüsselgenerierung

Eingabe: 1^k (k ist Sicherheitsparameter)

- p,q ← Wähle solange zufällige k-Bitzahlen bis beide prim sind (Primzahltest)
- 2. $N \leftarrow p^*q$
- 3. $\phi(N) \leftarrow (p-1)(q-1)$
- 5. $d \leftarrow e^{-1} \mod N$

Ausgabe: (N,e,d)

Erwartete Laufzeit: $\mathcal{O}(k^{3}*k) + \mathcal{O}(k^{2}) + \mathcal{O}(k^{2}) + \mathcal{O}(k^{2}) + \mathcal{O}(k^{2}) = \mathcal{O}(k^{4})$ polynomiell im Sicherheitsparameter k

Ver- und Entschlüsselung

- Bob verschlüsselt Message m als Ciphertext c=me mod N
 - Beachte: Bob verwendet öffentliche Parameter (N,e).
- Alice entschlüssel Ciphertext c zur Message m=c^d=m^{ed} mod N
- Laufzeit Ver-/Entschlüsselung: O(log³ N) mit Square&Multiply Algorithmus.

Satz: Sei N=pq und e,d $\in \mathbb{Z}^*_{\phi(N)}$ mit ed=1 mod $\phi(N)$. Für alle m $\in \mathbb{Z}_N$ gilt: $\mathsf{m}^{\mathsf{ed}} = \mathsf{m} \bmod \mathsf{N}$

- CRT: m^{ed}=m mod N ⇔ m^{ed}=m mod p und m^{ed}=m mod q
- Zeigen Gleichung mod p, analog mod q.
 - \Box ed=1 mod $\phi(N)$, d.h. ed = 1+k $\phi(N)$
 - □ $m^{ed} = m^{1+k\phi(N)} = m * (m^{p-1})^{k(q-1)} = m \mod p \text{ für } m \in \mathbb{Z}_p^*$ (Kleiner Satz von Fermat)
 - $0^{\text{ed}} = 0 \mod p \text{ für m} = 0.$

Sicherheit von RSA

Satz: Wir definieren die folgenden Probleme:

- Faktorisierung von N
- 2. Berechnen von ϕ (N)
- Berechnen von d aus (N,e)

Sei A ein Algorithmus mit polynomieller Laufzeit $\mathcal{O}(\log^c N)$, $c \in \mathbb{N}$, für eines der Probleme.

Dann besitzen alle drei Probleme polynomielle Komplexität.

- 1. ⇒ 2. ⇒ 3. folgt aus Algorithmus Schlüsselgenerierung
- Bleibt zu zeigen: 3. ⇒ 1.

Berechnen von $d \Rightarrow$ Faktorisieren von N

Beweisidee:

- Sei A Algorithmus mit A(N,e)=d.
- Sei ed-1= $k\phi(N)=k(p-1)(q-1)=2^rt$, t ungerade, $r \ge 2$
- Für beliebiges $a \in \mathbb{Z}_{N}^{*}$ gilt: $a^{2^{r_t}}=1 \mod N$.
 - 1.Fall: Quadratwurzeln a²^{r-1}t = ... = a^t = 1 mod N
 - □ 2.Fall: $a^{2^k t}$ = -1 mod N für $0 \le k < r$.
 - 3.Fall: $a^{2^kt} \neq \pm 1 \mod N$ und $a^{2^{k+1}t} = 1 \mod N$
 - Nichttriviale Quadratwurzel der Eins gefunden.
 - ggT(a^{2^kt}± 1, N) liefert Faktoren p,q von N.

(triviale Quadratwurzeln)(triviale Quadratwurzel)(nicht-triviale Quadratwurzel)

- Man kann zeigen, dass der 3.Fall für zufällige Wahl von a $\in \mathbb{Z}_N^*$ mit Wahrscheinlichkeit $\geq \frac{1}{2}$ eintritt.
- D.h. man muss im Erwartungswert zwei zufällige a wählen, um die Faktorisierung zu bestimmen.