Wiederholung

Optimale Lösungen mit Greedy-Strategie erfordern

- Optimalität der Greedy-Wahl
 - unabhängig von Subproblemen
- Optimalität der Subprobleme
- Beispiele für optimale Greedy-Lösungen
 - Scheduling Problem
 - Maximierungsproblem Rationaler Rucksack
 - Minimal spannende Bäume (MST)

Minimale Spannbäume MST

Problem minimaler Spannbaum (MST=minimum spanning tree):

Gegeben:

- G=(V,E), zusammenhängend, ungerichtet
- Gewichtsfunktion w: $E \to \mathbb{R}$

Gesucht:

Spannbaum $T=(V,E_T)$ mit minimalem Gewicht $w(T)=\sum_{e\in E_T}w(e)$.

Greedy-Strategie:

- Sortiere die Kanten aufsteigend nach Gewicht.
- Wähle nächste Kante, die keinen Kreis schließt.

Greedy-Algorithmus MST

Algorithmus Kruskal (MST)

Eingabe: G=(V,E), w: $E \rightarrow \mathbb{N}$

- 1. $\mathsf{E}_\mathsf{T} \leftarrow \emptyset$;
- Sortiere die Kanten aufsteigend nach Gewicht.
- For $e \in E$ in Reihenfolge aufsteigenden Gewichts
 - 1. If ((V, $E_T \cup \{e\}$) ist kreisfrei) then $E_T \leftarrow E_T \cup \{e\}$.

Ausgabe: MST $T=(V, E_T)$.

Laufzeit: $\mathcal{O}(|E| \log |E|)$

Korrektheit:

- T ist Spannbaum.
- T hat minimales Gewicht: Zeigen im folgenden
 - T ist gewichtetes Matroid.
 - Greedy-Algorithmus ist optimal für alle gewichteten Matroide.

16.01.2008

3

Definition Matroid

Def: M=(S,U) ist ein Matroid, falls

- 1. $S \neq \emptyset$ ist endliche Menge.
- 2. Vererbbarkeit:

 $U \subseteq \mathcal{P}(S)$, $U \neq \emptyset$ mit:

 $A \in U$ und $B \subseteq A \Rightarrow B \in U$.

U nennt man die Menge der unabhängigen Teilmengen.

3. Ergänzungseigenschaft:

 $A, B \in U \text{ und } |A| < |B| \Rightarrow \exists x \in B \setminus A : A \cup \{x\} \in U.$

Beispiele für Matroide

Beispiele:

Uniformes Matroid vom Rang k

- S = endliche Menge
- $U = \{A \subseteq S \mid |A| \le k\}$
 - \square 2. A \in U, B \subseteq A \Rightarrow B \subseteq S, |B| \leq |A| \leq k \Rightarrow B \in U

Matrixmatroid

- S = Menge der Zeilenvektoren einer Matrix
 - 1. S ist endlich.
- U = Teilmengen von linear unabhängigen Zeilenvektoren
 - 2. Teilmengen linear unabh. Vektoren sind linear unabhängig.
 - □ 3. Seien A, B ∈ U mit |A| < |B|.
 Es gibt in B einen Vektor, der linear unabhängig zu A ist. (Steinitzscher Austauschsatz, Basisergänzungssatz)

Kruskal's Algorithmus und Matroide

Sei G=(V,E) ein ungerichteter Graph.

- S=E
- $\mathsf{E}_\mathsf{T} \in \mathsf{U} \Leftrightarrow (\mathsf{V}, \mathsf{E}_\mathsf{T})$ ist kreisfrei.

D.h. Kruskals Algorithmus berechnet ein Element $E_T \in U$.

Satz: $(S,U)=(E,E_T)$ ist ein Matroid, das sogenannte Kreismatroid.

- 1. S=E ist endlich.
- 2. Entfernen von Kanten aus kreisfreien Graphen erzeugt keine Kreise.
- Sei A, B \in U mit |A| < |B|.
 - □ (V,A) hat |V|-|A| ZHK, (V,B) hat |V|-|B| ZHK (s. Vorlesung 06: Bäume)
 - (V,B) hat weniger Bäume als (V,A).
 - ⇒ B enthält Baum T mit Knoten in verschiedenen ZHK von (V,A).
 - □ T zusammenhängend: \exists x=(u,v) \in T: u,v in verschiedenen ZHK von A.
 - \Rightarrow (V, A \cup {x}) ist kreisfrei.

Maximal unabhängige Mengen

Definitionen:

- Sei $A \in U$. $x \notin A$ ergänzt A, falls $A \cup \{x\} \in U$.
- A ist maximal unabhängig (oder auch: A ist Basis)
 - ⇔ A kann nicht ergänzt werden.

Satz: Alle Basen eines Matroids (S,U) haben gleiche Kardinalität.

Annahme: Seien A, B Basen mit |A| < |B|.

- Ergänzungseigenschaft: $\exists x \in B \setminus A$: $A \cup \{x\} \in U$.
- D.h. x ergänzt A. (Widerspruch: A ist maximal unabhängig.)

Beispiel Kreismatroid:

- Jede maximal unabhängige Menge E_⊤ besitzt genau |V|-1 Kanten.
- Kreisfreier (V,E_T) mit $|E_T|=|V|-1$ ist Spannbaum (s. Vorlesung Bäume).

Greedy-Algorithmus für Matroide

Algorithmus Greedy-Matroid

Eingabe: Matroid M=(S, U), w: $S \rightarrow \mathbb{N}$

- 1. $A \leftarrow \emptyset$;
- Sortiere S aufsteigend nach Gewicht.
- For $x \in S$ in Reihenfolge aufsteigenden Gewichts
 - 1. If $(A \cup \{x\} \in U)$ then $A \leftarrow A \cup \{x\}$.

Ausgabe: Basis A ∈ U mit minimalem Gewicht.

Laufzeit: Sei n=|S| und f(n) die Laufzeit für den Test A∪{x}∈U:
O(n logn + nf(n))

Optimalität der Greedy-Wahl

Sei $x \in S$ mit minimalem Gewicht, so dass $\{x\} \in U$.

□ Falls kein solches x existiert, ist A=∅ die einzige Basis.

Lemma: Es gibt eine Basis A minimalen Gewichts, die x enthält.

Annahme: Sei B Basis minimalen Gewichts w(B) mit x ∉ B.

- Für alle y ∈ B gilt:
 - $\neg \{y\} \in U$ (Vererbbarkeit)
 - \neg $w(y) \ge w(x)$ nach Wahl von x
- Konstruktion von A:
 - \Box A \leftarrow {x}
 - □ while (|A| < |B|)
 - Ergänze A mit Element $b \in B$, so dass $A \cup \{b\} \in U$. (Ergänzungseigenschaft)

 - □ Da w(B) minimal ist, gilt w(B) \leq w(A) und damit w(A)=w(B).

Korrektheit von Schritt 3.

- Sei $x \in S$ mit minimalem Gewicht, so dass $\{x\} \in U$.
- x wird als erstes Element zu A hinzugefügt.

Frage: Kann $A=\{x\}$ mit Elementen mit Gewicht < w(x) erweitert werden?

Lemma: Sei M=(S,U) ein Matroid und {x}∉U. Dann gilt A∪{x} ∉ U für alle A ∈ U.

Annahme: $A \cup \{x\} \in U$.

■ Vererbbarkeit: $\{x\} \subseteq A \cup \{x\} \in U \Rightarrow \{x\} \in U \text{ (Widerspruch: } \{x\} \notin U)$

- D.h. jedes Element kann entweder gleich genutzt werden oder nie.
- Greedy-Matroid muss in Schritt 3 alle Elemente nur einmal betrachten:

Impliziert Korrektheit der For-Schleife in Schritt 3.

Optimalität der Subprobleme

Lemma: Sei x das erste von Greedy-Matroid ausgewählte Element. Dann muss eine minimale Basis des Matroids M'=(S',U') gefunden werden, wobei

- □ $S' = \{y \in S \mid \{x,y\} \in U\}$
- $\quad \Box \quad \mathsf{U}' = \{\mathsf{A} \subseteq \mathsf{S} \backslash \{\mathsf{x}\} \mid \mathsf{A} \cup \{\mathsf{x}\} \in \mathsf{U}\}.$
- A ist Basis von M mit x ∈ A ⇔ A'=A\{x} ist Basis von M'
- Es gilt w(A) = w(A') + w(x).
- D.h. jede minimale Basis A für M liefert eine minimale Basis A' für M' und umgekehrt.

Zusammenfassen der Lemmata

Satz: Greedy-Matroid berechnet bei Eingabe M=(S,U) eine minimale Basis von M.

- Jedes Element y mit {y} ∉ U braucht nicht betrachtet werden.
- Sei w(x) minimal mit {x} ∈ U.
 - □ Falls kein solches x existiert, ist A=∅ die einzige Basis.
- Greedy-Wahl: Es gibt eine optimale Lösung A mit x ∈ A.
- Subproblem: Finde optimale Lösung im Matroid M'.

Korollar: Alg. Kruskal berechnet einen minimalen Spannbaum.

Minimierung versus Maximierung

Maximierungsproblem

- Gegeben: gewichtetes Matroid M=(S,U), w: S → N
- Gesucht: Basis von A mit maximalem Gewicht
- 1. Möglichkeit: Modifiziere Greedy-Matroid
 - Sortiere absteigend
 - Wähle greedy maximales Element, das A ergänzt.
- 2. Möglichkeit: Modizifiere Gewichtsfunktion w
 - Übungsaufgabe

Warnung: Es gibt zahlreiche Probleme

- die optimal mit Greedy gelöst werden können, aber
- von denen keine Matroiddarstellung bekannt ist.