Berechnung von Teilmengen

Satz Anzahl der Teilmengen

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

Beweis

- Korollar aus Binomischem Lehrsatz $(1+1)^n = \sum_{k=0}^n \binom{n}{k} 1^k 1^{n-k}$.
- Oder kombinatorisch: Sei M Menge mit |M| = n.
- Die Kardinalität der Potenzmengen $\mathcal{P}(M)$ ist $|\mathcal{P}(M)| = 2^n$.
- In $\mathcal{P}(M)$ sind alle k-elementigen Teilmengen von M enthalten.
- Sei S_k die Menge der k-elementigen Teilmengen von M.
- Es gilt $|S_k| = \binom{n}{k}$ für $k = 0, \dots, n$.
- Ferner ist $\mathcal{P}(M) = \biguplus_{k=0}^{n} S_k$ und damit nach Summenregel

$$2^{n} = |\mathcal{P}(M)| = \sum_{k=0}^{n} |S_{k}| = \sum_{k=0}^{n} {n \choose k}.$$

Rekursive Berechnung von Binomialkoeffizienten

Satz Rekursion Binomialkoeffizienten

Für alle $n, k \in \mathbb{N}$ mit n > k gilt

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Beweis

- Wir partitionieren die k-elementigen Teilmengen S_k von [n]:
- Fall 1: S_k enthält n. Damit enthält S_k noch k-1 Elemente aus [n-1]. Dafür gibt es $\binom{n-1}{k-1}$ Möglichkeiten.
- Fall 2: S_k enthält n nicht. Damit enthält S_k insgesamt k Elemente aus [n-1], wofür es $\binom{n-1}{k}$ Möglichkeiten gibt.
- D.h. die $\binom{n}{k}$ vielen k-elementigen S_k lassen sich in $\binom{n-1}{k-1}$ und $\binom{n-1}{k}$ Teilmengen partitionieren.
- Aus der Summenregel folgt $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

Pascal'sches Dreieck

Rekursionsformel:
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

n=0						1					
n = 0 $n = 1$					1	•	1				
n = 2				1		2		1			
<i>n</i> = 3			1		3		3		1		
n = 4		1		4		6		4		1	
<i>n</i> = 5	1		5		10		10		5		1

Vandermonde'sche Identität

Satz Vandermonde Identität

Für alle $k, m, n \in \mathbb{N}_0$ gilt:

$$\binom{n+m}{k} = \sum_{t=0}^{k} \binom{n}{t} \binom{m}{k-t}.$$

Beweis

- Sei $M = \{1, 2, \dots, n+m\}$.
- Die Anzahl der k-elementigen Teilmengen von M ist $\binom{n+m}{k}$.
- Partitionieren M in $M_1 = \{1, ..., n\}$ und $M_2 = \{n + 1, ..., n + m\}$.
- Die k-elementigen Teilmengen von M lassen sich darstellen als Vereinigung von t-elementigen Teilmengen von M₁ und (k - t)-elementigen Teilmengen von M₂ für t = 0,...,k.
- Anzahl der *t*-elementigen Teilmengen von M_1 : $\binom{n}{t}$.
- Anzahl der (k-t)-elementigen Teilmengen von M_2 : $\binom{m}{k-t}$.
- Summenregel: Aus $M=M_1\biguplus M_2$ folgt die Vandermonde Identität.

k-Partition, Stirlingzahl zweiter Art

Definition *k*-Partition, Stirlingzahl zweiter Art

Sei $A = \{a_1, \ldots, a_n\}$. Eine k-Partition von A ist eine Zerlegung von A in k paarweise disjunkte $A_1, \ldots, A_k \subseteq A$ mit $A = \bigcup_{i=1}^k A_i$. Wir bezeichnen mit $S_{n,k}$ die Anzahl von k-Partitionen einer n-elementigen Menge. $S_{n,k}$ heisst auch die Sterlingzahl zweiter Art.

Bsp:
$$A = \{1, 2, 3\}$$
 und $k = 2$

- $\bullet \ \{1\} \cup \{2,3\}, \, \{1,2\} \cup \{3\}, \, \{1,3\} \cup \{2\}$
- D.h. $S_{3,2} = 3$.

Spezialfälle:

- $S_{n,k} = 0$ für k > n
- $S_{n,n} = S_{n,1} = 1, S_{n,0} = 0$
- $S_{0,0} := 1$

Rekursive Berechnung von $S_{k,n}$

Satz Rekursive Berechnung der Stirlingzahl 2. Art

Für alle $k, n \in \mathbb{N}$ mit $n \ge k$ gilt

$$S_{n,k} = S_{n-1,k-1} + k \cdot S_{n-1,k}.$$

Beweis:

- Sei $A = \{a_1, \dots, a_n\}$.
- Wir teilen die k-Partitionen A₁,..., A_k in zwei Klassen auf.
- Fall 1: $A_i = \{a_n\}$ für ein $i \in [k]$. Dann befinden sich a_1, \ldots, a_{n-1} in einer (k-1)-Partition. Dafür gibt es $S_{n-1,k-1}$ Möglichkeiten.
- Fall 2: $a_n \in A_i$ und $|A_i| > 1$. Die Mengen $A_1, \ldots, A_{i-1}, A_i \setminus a_n, A_{i+1}, \ldots, A_k$ bilden eine k-Partition für $\{a_1, \ldots, a_{n-1}\}$. Dafür gibt es $S_{n-1,k}$ Möglichkeiten. Zum Einsortieren von a_n in eine der Teilmengen gibt es k Möglichkeiten. Insgesamt also $k \cdot S_{n-1,k}$ Möglichkeiten.
- Die Summenregel liefert $S_{n,k} = S_{n-1,k-1} + k \cdot S_{n-1,k}$.

Beispiel: Rekursives Berechnen von $S_{4,2}$

Bsp:

- Anzahl der 2-Partitionen von A = [4]
- Fall 1: {4} ist eine Teilmenge. Die andere Teilmengen ist {1, 2, 3}.
- Fall 2: {4} ist in einer der drei 2-Partitionen von {1,2,3}:
 - $ightharpoonup \{1\} \cup \{2,3\} : \{1,4\} \cup \{2,3\}, \{1\} \cup \{2,3,4\}$
 - $\blacktriangleright \ \{1,2\} \cup \{3\} : \{1,2,4\} \cup \{3\}, \{1,2\} \cup \{3,4\}$
 - $\blacktriangleright \ \{1,3\} \cup \{2\} : \{1,3,4\} \cup \{2\}, \{1,3\} \cup \{2,4\}$
- D.h. $S_{4,2} = S_{3,1} + 2 \cdot S_{3,2} = 1 + 2 \cdot 3 = 7$.

Stirlingdreieck zweiter Art

Rekursionsformel: $S_{n,k} = S_{n-1,k-1} + k \cdot S_{n-1,k}$

n = 0						1					
<i>n</i> = 1					0		1				
<i>n</i> = 2				0		1		1			
<i>n</i> = 3			0		1		3		1		
<i>n</i> = 4		0		1		7		6		1	
<i>n</i> = 5	0		1		15		25		10		1

Bellzahlen

Definition Bellzahlen

Sei A eine Menge mit n Elementen. Mit B_n bezeichnen wir die Anzahl aller Partitionen von A.

Bsp: $A = \{1, 2, 3\}$

- $\bullet \ \{1,2,3\}, \{1\} \cup \{2,3\}, \{1,2\} \cup \{3\}, \{1,3\} \cup \{2\}, \{1\} \cup \{2\} \cup \{3\}.$
- D.h. $B_3 = 5$.

Korollar Bellzahlen mittels Stirlingzahlen zweiter Art

$$B_n = \sum_{k=0}^n S_{n,k}.$$

• D.h. B_n ist die n-te Zeilensumme im Stirlingdreieck 2. Art.

Geordnete Zahlpartitionen

Definition Geordnete Zahlpartitionen

Sei $n \in \mathbb{N}$. Sei $Z_{n,k}$ die Anzahl der Möglichkeiten, n als Summe k positiver natürlicher Zahlen zu schreiben. Wir nennen $Z_{n,k}$ auch die Anzahl der *geordneten* k-Zahlpartitionen von n.

Bsp: 3-Zahlpartitionen von 5

- \bullet 1 + 1 + 3, 1 + 3 + 1, 3 + 1 + 1, 1 + 2 + 2, 2 + 1 + 2, 2 + 2 + 1
- D.h. $Z_{5,3} = 6$.

Spezialfälle:

- $Z_{n,n} = Z_{n,1} = 1$
- $Z_{n,k} = 0$ für k > n

Berechnung von $Z_{n,k}$

Satz Anzahl geordneter *k*-Zahlpartitionen von *n*

Seien $n, k \in N$. Dann gilt

$$Z_{n,k}=\binom{n-1}{k-1}.$$

Beweis:

• Schreiben jede Zahl *n* als Summe von *n* Einsen, z.B.

$$5 = 1 + 1 + 1 + 1 + 1$$
.

• Wählen k-1 der n-1 Pluszeichen als Trennzeichen aus, z.B.

$$5 = 1 \oplus 1 + 1 \oplus 1 + 1 = 1 + 2 + 2$$
.

- Ziehen ohne Zurücklegen: Kein doppeltes Pluszeichen.
- ungeordnet: Reihenfolge der Pluszeichen ist ohne Belang.
- D.h. die Anzahl der geordneten k-Partitionen ist $\binom{n-1}{k-1}$.

Beispiel: Zählen von Lösungen

Bsp: Sei
$$X = \{(x_1, ..., x_k) \in \mathbb{N}_0^k \mid x_1 + ... + x_k = n\}$$
. Bestimme $|X|$.

- Problem: Summanden können Null sein.
- Wir addieren zu jedem der k Summanden eine Eins

$$x'_1 + \dots x'_k = n + k \text{ mit } x'_i \ge 1 \text{ für } i = 1, \dots, k.$$

- Jede Summe der x_i, die sich zu n aufaddieren entspricht eineindeutig einer geordneten k-Zahlpartition von n + k. (Isomorphismus)
- Mit Gleichheitsregel ergibt sich $|X| = \binom{n+k-1}{k-1}$.

Ungeordnete Zahlpartitionen

Definition Ungeordnete Zahlpartitionen

Sei $n \in \mathbb{N}$. Sei $P_{n,k}$ die Anzahl der Möglichkeiten n als Summe k positiver Zahlen zu schreiben, wobei die Reihenfolge der Summanden keine Rolle spielt. Wir nennen $P_{n,k}$ die Anzahl ungeordneter k-Zahlpartitionen von <math>n.

Bsp: *P*_{7,3}

- 1+1+5, 1+2+4, 1+3+3, 2+2+3
- D.h. $P_{7,3} = 4$.

Spezialfälle:

- $P_{n,n} = P_{n,1} = 1$
- $P_{n,k} = 0$ für k > n
- $P_{0.0} := 1$

Rekursive Berechnung ungeordneter Zahlpartitionen

Satz Anzahl ungeordneter Zahlpartitionen

Für alle
$$k, n \in \mathbb{N}$$
 mit $k < n$ gilt $P_{n+k,k} = \sum_{j=1}^k P_{n,j}$.

Beweis:

• Wir zerlegen n + k in i Einsen-Summanden und k - i Summanden größer als 1, d.h.

$$n + k = 1 + \ldots + 1 + n_{i+1} + \ldots + n_k \text{ mit } n_j \ge 2 \text{ für } j = 1, \ldots, k.$$

• Wir subtrahieren Eins von jedem der Summanden

$$n = n'_{i+1} + \dots n'_k \text{ mit } n_j \ge 1 \text{ für } j = i+1,\dots,k.$$

- D.h. die n'_i bilden eine ungeordnete (k-i)-Zahlpartition von n.
- Andererseits liefert jede (k i)-Zahlpartition von n eineindeutig eine k-Zahlpartition von n mit genau i Einsen (Isomorphismus).
- Mit Gleichheitsregel: $P_{n+k,k}$ mit genau i Einsen ist $P_{n,k-i}$.
- Mit Summenregel: $P_{n+k,k} = \sum_{i=0}^{k-1} P_{n,k-i} = \sum_{i=1}^{k} P_{n,i}$.