Aufgabe 4.1 (4 Punkte)

a) Berechne den sogenannten Prüfercode von

$$T := ([8], \{\{2,3\}, \{2,4\}, \{2,5\}, \{2,6\}, \{6,7\}, \{7,8\}, \{1,7\}\}))$$

nach der Methode des Beweises des Satzes von Cayley aus der Vorlesung. Gib dazu in jedem Schritt die Veränderung des Baumes an.

b) Zeichne den Baum mit n=7 Knoten, dessen Prüferkode 43224 ist. Gib dazu die Kanten des Baumes in der Reihenfolge an, in der sie durch den Aufruf des Algorithmus Dekodierung generiert werden.

Aufgabe 4.2 (4 Punkte)

Führe eine Breitensuche für den Graphen $G = (\{1, \dots, 7\}, E)$,

$$E = \{\{1, 2\}, \{2, 5\}, \{5, 6\}, \{4, 6\}, \{1, 7\}, \{2, 7\}, \{3, 7\}, \{4, 7\}, \{1, 3\}, \{4, 5\}\}$$

mit dem Startknoten 1 durch.

Gib dazu tabellarisch bei jeder Veränderung des Queue-Inhalts den gesamten Queue-Inhalt und die Werte $d[1], \ldots, d[7], \operatorname{pred}[1], \ldots, \operatorname{pred}[7]$ an.

Aufgabe 4.3 (4 Punkte)

Sei G = (V, E) ein zusammenhängender Graph und T der Spannbaum von G, den eine Tiefensuche mit Startknoten $s \in V$ liefert, d.h. $T = (V, \{\{v, \operatorname{pred}[v]\} | v \in V \setminus \{s\}\})$.

Argumentiere, dass der Graph G bzgl. T und s Baumkanten, VR-Kanten, aber keine Kreuzungskanten enthalten kann (vergleiche Präsenzaufgabe 4.6).

Aufgabe 4.4 (4 Punkte)

Beweise durch Induktion über die Dimension d: Der d-dimensionale Hyperwürfel

$$Q_d := (\{0,1\}^d, \{\{a,b\} : |\{i : a_i \neq b_i\}| = 1\})$$

ist hamiltonsch.

Präsenzaufgabe 4.5

Führe eine Tiefensuche für den Graphen $G = (\{1, \dots, 6\}, E)$,

$$E = \{\{1,2\},\{1,6\},\{2,6\},\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,5\}\}$$

mit dem Startknoten 1 durch. Gib dazu tabellarisch bei jeder Veränderung des Stack-Inhalts den gesamten Stack-Inhalt und die Werte $\operatorname{pred}[1], \dots, \operatorname{pred}[6]$ an.

Präsenzaufgabe 4.6

Sei G=(V,E) ein zusammenhängender Graph, $s\in V$ und $T=(V,\tilde{E})$ mit $\tilde{E}\subseteq E$ ein Spannbaum, der s enthält.

Zwei Knoten $v, w \in V$ heißen abhängig bzgl. T und s, genau dann wenn v auf dem Pfad in T von s nach w liegt, oder w auf dem Pfad in T von s nach v liegt.

Bezüglich T und s lassen sich alle Kanten $e=\{a,b\}\in E$ wie folgt klassifizieren:

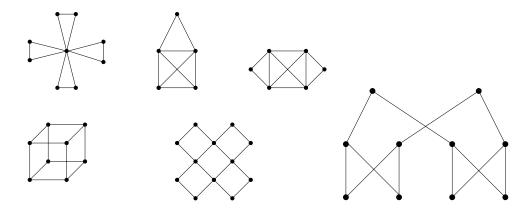
- e heißt Baumkante, falls $e \in \tilde{E}$.
- e heißt Vorwärts-/Rückwartskante, falls a und b abhängig bzgl. T und s sind, aber $e \notin \tilde{E}$.
- e heißt Kreuzungskante, falls a und b nicht abhängig sind.

Sei nun T der Spannbaum aus Präsenzaufgabe 4.5 mit Startknoten 1.

Gib alle Baumkanten, Vorwärts- und Rückwärtskanten in T an.

Präsenzaufgabe 4.7

Welche der folgenden Graphen sind hamiltonsch?



Präsenzaufgabe 4.8

Beweise oder widerlege: Die Ecken-Kanten-Graphen aller fünf platonischen Körper sind hamiltonsch.