
Dobbertin Challenge 2014

1 Challenge

Cold Boot Attacks

It is known for many years that secret cryptographic keys can be recovered from DRAM1. One
of the main scenarios is a locked computer running a cryptographic software. The idea of the
so-called “cold boot attack” is that even after a reboot of the computer, the DRAM data can be
retrieved. Experiments showed that in the short time the DRAMs are not supplied with power
during the reboot, the bits decay very slowly at a predictable rate. Depending on the “ground
state” and the duration of the power outage, bit flipping probabilities can be estimated. If the
ground state is 0, it can be observed that a couple of 1-bits flip to 0, but most of the 0-bits stay
0. After the DRAM regains its power supply, the erroneous bits are refreshed regularly and stay
stable. A special purpose operating system that uses only negligible amounts of DRAM (and
thus preserves most of the old DRAM bits) is booted and streams the memory content to an
external device.

Attack on NTRU

In this challenge, we want to use “cold boot” side channel information to attack NTRU. NTRU
is a public key encryption system that uses a binary polynomial f as its secret key and is
described below. Due to implementation reasons of the decryption routine, in our case the
polynomial f was stored in memory three times. Applying the above described attack, it was
possible to restore all three copies of f . Due to the short power outage, some of the bits flipped
during the attack. It is estimated that the probability of a 1 flipping to the ground state 0 is
30 %. On the other hand a 0 becomes a 1 with only 0.1%. In your attack, you may also assume
that all bits flipped independently.

before the reboot after the reboot

1

0 0

1

0.999

0.7

0.3

0.001

Fig. 1. bit flipping probabilities

Your Task

The attacked implementation uses the following NTRU parameters:

N = 1087, p = 3, q = 2048, df = dr = 121, dg = 362.

You can find the used public key and the three erroneous versions of f in the attached file. You
will also find an encryption of a secret (ASCII encoded) message. Your task is to compute this
message using the given side channel information! Please send your solution to

dc2014@rub.de
1 Dynamic Random Access Memory



2 NTRU

There are several versions of NTRUEncrypt. In this section we will describe the version that is
attacked in the challenge. NTRU parameters are N, p, q, df , dr and dg.

Some Math

NTRU operations are performed in the ring R = Zq[X]/(XN − 1). Each element of R can thus
be described as a polynomial of maximal degree N−1 with coefficients in Zq = {0, 1, . . . , q−1}.
The addition in the ring is the coefficient-wise (modulo q) addition of the polynomials. The ring
multiplication is the multiplication of the polynomials followed by a reduction modulo XN − 1.
The multiplicative inverse of a ring element a is a ring element a−1 such that a · a−1 = 1.
Example with N = 5, q = 4 (all coefficient-wise operations are performed modulo 4):

a = X4 + 3X2 + 1, b = 3X3 + X2

Addition: a + b = X4 + 3X3 + 1

Multiplication: a · b = (X4 + 3X2 + 1) · (3X3 + X2) = 3X4 + 3X3 + X + 1 mod X5 − 1

Inverse: a−1 = X4 + 3X3 + X2, since a · a−1 = 1 mod X5 − 1

Remark: Some NTRU operations are performed modulo p (instead of modulo q), with the same
rules as above.

Key Generation

In the key generation, two ring elements f, g are chosen uniformly at random with the following
restrictions:

I g is chosen such that dg coefficients are 1 and (the remaining) N − dg are 0.
I f is chosen such that df coefficients are 1 and N − df are 0 and such that the inverses

fq := f−1 mod q (with coefficients mod q) and fp := f−1 mod p (coefficients mod p) exist.

Afterwards, a polynomial h := p · f−1 · g (mod q) is computed and is used as the public key.
The private key is (only) f .

A toy example (N = 7, q = 16, p = 3, df = 5, dg = 2): The polynomials g = X + 1 (two
1-coefficients) and f = X6+X4+X3+X2+1 (five 1-coefficients) are chosen. f is both invertible
modulo q and modulo p. The inverses are fq = 6X6 + 7X5 + 7X4 + 7X3 + 6X2 + 6X + 6 and
fp = 2X6 + 2X2 + 2X + 2.

The corresponding public key is h = p · fq · g = 7X6 + 10X5 + 10X4 + 7X3 + 4X2 + 4X + 4.

Encryption

Again a uniformly random polynomial r is chosen such that dr coefficients are 1 and the re-
maining N − dr coefficients are 0. The message is encoded as a polynomial m with binary
coefficients. The ciphertext is finally computed as c := h · r + m mod q. Example: r = X4 + 1
and m = X3 + X2 are chosen. Thus c = 11X6 + 14X5 + 14X4 + 15X3 + 15X2 + 14X + 11.

Decryption

The message is decrypted as m := (f · c mod q) · fp mod p. Thus, first f · c mod q is computed,
reduced modulo p and finally multiplied with the inverse of f modulo p. Example:

I f · c mod q = 2X6 + 5X5 + 4X4 + X3 + 2X2 + 4X + 4
I (f · c mod q) mod p = 2X6 + 2X5 + X4 + X3 + 2X2 + X + 1
I (f · c mod q) · fp mod p = X3 + X2


