J. Cryptology (2006) OF1-OF12 Journal of

DOI: 10.1007/500145-006-0433-6 CRYPTOLOGY

© 2006 International Association for
Cryptologic Research

Deterministic Polynomial-Time Equivalence of
Computing the RSA Secret Key and Factoring

Jean-Sébastien Coron

University of Luxembourg,
162a avenue de la Faiencerie, L-1511 Luxembourg
coron@clipper.ens.fr

Alexander May

Department of Computer Science, TU Darmstadt,
64289 Darmstadt, Germany
may @informatik.tu-darmstadt.de

Communicated by Dan Boneh

Received 30 August 2004 and revised 3 January 2006
Online publication 9 October 2006

Abstract. We address one of the most fundamental problems concerning the RSA
cryptosystem: does the knowledge of the RSA public and secret key pair (e, d) yield
the factorization of N = pgq in polynomial time? It is well known that there is a
probabilistic polynomial-time algorithm that on input (N, e, d) outputs the factors p
and ¢g. We present the first deterministic polynomial-time algorithm that factors N given
(e, d) provided that e,d < @(N). Our approach is an application of Coppersmith’s
technique for finding small roots of univariate modular polynomials.

Key words. RSA, Coppersmith’s theorem.

1. Introduction

The most basic security requirement for a public key cryptosystem is that it should be
hard to recover the secret key from the public key. To establish this property, one usually
identifies a well-known hard problem P and shows that recovering the secret key from
the public key is polynomial-time equivalent to solving P.

In this paper we consider the RSA cryptosystem [11]. We denote by N = pg the
modulus, product of two primes p and g of the same bit-size. Furthermore, we denote
by e, d the public and private exponents, such that e - d = 1 mod ¢(N), where p(N) =
(p — 1) - (g — 1) is Euler’s totient function. The public key is then (NN, e) and the secret
key is (N, d).

It is well known that there exists a probabilistic polynomial-time equivalence between
computing d and factoring N. The proof is given in the original RSA paper by Rivest,
Shamir and Adleman [11] and is based on a work by Miller [8].

OF1



OF2 J.-S. Coron and A. May

In this paper we show that the equivalence can actually be made deterministic, namely
we present the first deterministic polynomial-time algorithm that on input (N, e, d)
outputs the factors p and ¢, provided that e - d < N?2. Since, for standard RSA, the
exponents ¢ and d are defined modulo ¢(N), we have that ed < @(N)> < N? as
required. Our result is mainly of theoretical interest, since our deterministic algorithm
is much less efficient than the probabilistic one. However, we also present an algorithm
that recovers the factors p and g deterministically in time O(log? N) whene-d < N3/?;
this happens when e is small and d < ¢(NN), which is common in practice.

Our technique is a variant of Coppersmith’s theorem for finding small roots of uni-
variate polynomial equations [2]. Coppersmith’s theorem is based on the LLL lattice
reduction algorithm [6], and has found numerous applications in cryptanalysis (see [10]
for a survey). We use a variant in which one considers polynomials modulo an unknown
integer (instead of the known modulus). This variant was introduced by Boneh et al. in
[1] for factoring moduli of the form p”q in polynomial time for large r. This approach
was also used by Howgrave-Graham in [5] to compute approximate integer common di-
visors. Our technique is actually a direct application of Howgrave-Graham’s algorithm,
but for completeness we also provide a full description of our algorithm.

This article is an extended version of a paper published by May [7] at Crypto 2004.
The difference with [7] is that our analysis is based on univariate modular polynomials
instead of bivariate integer polynomials, which leads to a simpler algorithm. Moreover,
we generalize our analysis to the case of unbalanced prime factors p and ¢g. Quite
expectedly, we obtain that the upper bound on ed gets larger when the prime factors are
more imbalanced. For example, if p < N'/4, then the modulus N can be factored in
polynomial time given (e, d) for e - d < N8/ (instead of N2 for prime factors of equal
size).

2. Background on Lattices

Letuy,...,u, € Z" be linearly independent vectors with w < n. The lattice L spanned
by (uy, ..., u,) consists of all integral linear combinations of uy, ..., u,, that is,
w
L= Zni-ui|n,~€Z .
i=1
Such a set {uy, ..., u,} of vectors is called a lattice basis. All the bases have the same

number of elements, called the dimension or rank of the lattice. We say that the lattice is
full rank if @ = n. Any two bases of the same lattice can be transformed into each other
by a multiplication with some integral matrix of determinant &-1. Therefore, all the bases
have the same Gramian determinant det, <; j<4(u;, u;). One defines the determinant of
the lattice as the square root of the Gramian determinant. If the lattice is full rank, then
the determinant of L is equal to the absolute value of the determinant of the @ x w matrix
whose rows are the basis vectors uy, ..., U,.
The LLL algorithm [6] computes a short vector in a lattice:

Theorem 1 (LLL). Let L be a lattice spanned by (uy, ..., u,) € Z", where the Eu-
clidean norm of each of the vectors u, ..., u, is bounded by B. Given (uy, ..., u,),



RSA Secret Key and Factoring OF3

the LLL algorithm finds a vector by such that
b1l < 27D/ det(L) !/
in time O(w’nlog’® B)

In order to improve the complexity of our algorithm, we use an improved version
of LLL, called the L? algorithm and due to Nguyen and Stehlé [9]. The L? algorithm
achieves the same bound on ||b; ]| but in time O(w*n(w + log B) log B).

3. An Algorithm for ed < N3/?

In this section we consider the standard RSA setting, i.e. we assume that N is the product
of two different prime factors p, ¢ of the same bit-size. We also assume that ed < N3/,
This is a practical case since for RSA one generally uses a small public exponent e (for
example, e = 3 or e = 2'% + 1). The following theorem shows that the factorization of
N can then be recovered in deterministic time O(log> N):

Theorem 2. Let N = p-q, where p and q are two prime integers of the same bit-size.

Lete,d be suchthate-d = 1 mod ¢(N).Thenifl < e-d < N3/2 there is a deterministic
algorithm that given (N, e, d) recovers the factorization of N in time O(log? N).

Proof. Inthe following we assume without loss of generality that p < g, which implies

p<N'"*<q<2p<2N"V2
This gives the following useful estimates:
p+q<3N'"? and @(N)=N+1-(p+q) > iN. (1)

We denote by [k] the smallest integer greater than or equal to k. Furthermore, we denote
by Z:;( wy the group of invertible integers modulo ¢(N).
Since ed = 1 mod ¢(N), we know that

ed =1+ kop(N) for some k € N.

We sho~w that k can be recovered up to a small constant when ed < N 32, Namely, we
define k = (ed — 1)/ N as an underestimate of & and we observe that

- ed — 1 ed — 1
k—k = -
o(N) N
_ N(ed—1)—(N—p—q+1)(ed—1)
B 9(N)N

(p+qg—1)(ed - 1)
@(N)N




OF4 J.-S. Coron and A. May

Using (1) we conclude that
k—k <6N2(ed —1). )

Then since ed < N3/2, we obtain that0 < k —k < 6. Thus, one of the six values [k]+i,
i =0,1,...,5, must be equal to k. We can test these six candidates successively and
for the right choice k, we can compute

1 —ed
N+1+T:P+C],

from which one recovers the factorization of N. Our approach uses only elementary
arithmetic on integers of bit-size O(log(N)). Thus, the running time is (’)(log2 N), which
concludes the proof of the theorem. O

4. The Case of ed < N>

As in the previous section, we assume that N is the product of two primes p and g of
same bit-size, but here we only assume that ed < N 2 Under this assumption, we show
the deterministic polynomial-time equivalence between recovering d and factoring N.
We will generalize to an N = pg with unbalanced prime factors in the next section.

Theorem 3. Let N = p-q, where p and q are two prime integers of the same bit-size.
Lete,d be suchthate-d = 1 mod ¢(N).Thenifl <e-d < N2, there is a deterministic
algorithm that given (N, e, d) recovers the factorization of N in time O(log’ N).

Proof. Our technique is a direct application of Howgrave-Graham’s algorithm for
approximate integer common divisors [5]. Given two integers a < b and M = b* for
some o € [0, 1], Howgrave-Graham’s algorithm outputs all integers d > M dividing
both a + xo and b for some |xp| < X, in time polynomial in log b, where X = b? and
B = a’.

LettingU =e-d—1ands = p+q — 1, our goal is to recover s from N and U. Then
from s it is straightforward to recover the factorization of N. From U = 0 mod ¢(N)
and ¢(N) = (p — I)(gq — 1) = N — s, we observe that N — s divides both U and
N — 5. Therefore, one can apply Howgrave-Graham’s algorithm witha := N, b := U,
xo ;= —s and M = N/2. We have that « ~ ! and g ~ %, which enables to recover s
and eventually the factorization of N.

In the following, for completeness, we provide the full description of an algorithm
for factoring N given (e, d), similar to Howgrave-Graham’s algorithm. First, we assume
that we are given the high-order bits sy of s. More precisely, we let X be some integer,
and write s = so- X + xo, where 0 < xo < X. The integer sy will eventually be recovered
by exhaustive search. Moreover, we denote ¢ = ¢(N). Fromgp =(p—1)-(g —1) =
N —s =N —sp- X — xo we obtain the following equations:

U =0 mod g, 3
X0—N+s0-X =0 mod ¢. 4)



RSA Secret Key and Factoring OF5

We consider the polynomials
gij(x)=x"-(x =N+s-X)/ - U"

forO < j <mandi = 0,andfor j = mand 1 <i <k, where m, k are fixed parameters.
From (3) and (4), we have that for all previous (i, j),

gij(x0) =0 mod ¢".

For any linear integer combination /(x) of the polynomials g;;(x), we have that 2 (xg) =
Omodg™. Our goal is then to find a non-zero A (x) with small coefficients. Namely, using
the following lemma from [4], if the coefficients of /(x) are sufficiently small, we have
that 2 (xo) = 0 holds over the integers. The integer x can then be recovered using any
standard root-finding algorithm; eventually from x, one recovers the factorization of N.
Given a polynomial (x) = Y h;x’, we denote by ||i(x)| the Euclidean norm of the
vector of its coefficients 4;.

Lemma 4 (Howgrave-Graham). Let h(x) € Z[x] be the sum of at most @ monomials.

Suppose that h(xg) = 0mod ¢™ where |xo| < X and |h(xX)|| < ¢"//w. Then
h(xo) = 0 holds over the integers.

Proof. We have

S ()

o)l = | hixy| =

i (X0 i
< |x (F) | = X Inx|
< Volh(xX)| < ¢".
Since h(xg) = 0 mod ¢™, this gives h(xp) = 0. O

We consider the lattice L spanned by the coefficient vectors of the polynomials
gij(xX). One can see that these coefficient vectors form a triangular basis of a full-
rank lattice of dimension w = m + k 4 1 (for an example, see Fig. 1). The determinant
of the lattice is then the product of the diagonal entries, which gives

det L = X(m+k)(m+k+1)/2Um(m+1)/2. (5)

go(xX) | U?
go1(xX) x  U?X
202(xX) * *  UX?

g03(xX) * * * X3

gi3(xX) * * x X4

g23(xX) * * * X3

233 (xX) * * D ¢

Fig. 1. The lattice L of the polynomials g;;(xX) for k = m = 3. The symbol “x” correspond to non-zero
entries whose value is ignored.



OF6 J.-S. Coron and A. May
Using LLL (Theorem 1), one obtains a non-zero vector b whose norm is guaranteed
to satisfy
b)) < 27D (det L)

The vector b is the coefficient vector of some polynomial 4 (x X) with ||h(x X)| = ||b]|.
The polynomial i (x) is then an integer linear combination of the polynomials g;;(x),
which implies that 2 (xg) = 0 mod ¢™. In order to apply Lemma 4, it is therefore sufficient
to have that

9 (@=1)/4 (detL)l/w < v

Using the inequalities /o < 2“"Y/2, ¢ > N/2 and  — 1 = m + k > m, we obtain
the following sufficient condition:

detL < N™@.2 2@ @D,
From (5) and inequality U < N2, this gives
Xtk D/2 o gmk | p=2er@=1)
which gives the following condition for X:

NY b 2-m-k

X2 YOELIN ikt

Our goal is to maximize the bound X on x, so that fewer bits must be exhaustively
searched. For a fixed m, the function y (m, k) is maximal for k = m. The corresponding
bound for k = m is then

X < % . N1/2—l/(4m+2). (6)

The LLL algorithm is therefore applied on a lattice of dimension w =m + k + 1 =
2 -m + 1 and with entries bounded by B = O(N?"). Since the running time of LLL
is polynomial in the lattice dimension and in the size of the entries, given sy such that
s =50 X + xo with 0 < xo < X, the previous algorithm recovers the factorization of
N in time polynomial in (log N, m).

Finally, taking the greatest integer X satisfying (6), and usings = p+qg—1 <3N
we obtain

172
b

S0 < — <49 NVém+),
=y =

Then, taking m = [log N], we obtain that s is upper-bounded by a constant. The
previous algorithm is then run for each possible value of sy, and the correct sy enables us
to recover the factorization of N. The running time is dominated by the time it takes to
run LLL on a lattice of dimension w = 2m + 1 with entries bounded by B = O(N 2my
Since the running time of LLL is bounded by O(w® log® B), our algorithm recovers the
factorization of N in time (’)(log12 N). If one uses the L? variant instead of LLL, one
obtains a running time of O(log® N). O



RSA Secret Key and Factoring OF7
5. Generalization to Unbalanced Prime Factors

The previous algorithm fails when the prime factors p and g are unbalanced, because in
this case we have that s = p 4+ ¢ — 1 > /N, and s is then much greater than the bound
on X given by inequality (6).

In this section we provide an algorithm which extends the result of the previous section
to unbalanced prime factors. We use a technique introduced by Durfee and Nguyen in
[3], which consists in using two separate variables x and y for the primes p and ¢, and
replacing each occurrence of x - y by N. We note that Howgrave-Graham’s algorithm
for finding approximate integer common divisors does not seem to apply in this case.

The following theorem shows that the factorization of N given (e, d) becomes easier
when the prime factors are imbalanced. Namely, the condition on the product e - d
becomes weaker. For example, we obtain that for p < N'/4, the modulus N can be
factored in polynomial time given (e, d) if e - d < N®/3 (instead of N for prime factors
of equal size).

Theorem 5. Let B and 0 < § < % be real values, such that 25(1 — §) < 1. Let
N = p - q, where p and q are two prime integers such that p < N and g < 2 - N'7%,
Lete,d be suchthate-d = 1 mod ¢(N),and1 < e-d < NP Then there is a deterministic
algorithm that given (N, e, d) recovers the factorization of N in time O(log’ N).

Proof. Let U = ed — 1 as previously. Our goal is to recover p, g from N and U. We
have the following equations:

U = 0 mod g, @)
p+qg—(N+1) =0 mod ¢. ®)

Letm > 1,a > 1 and b > 0 be integers. We define the following polynomials g;jx (x, y):

gijk(x,y) = Xy U ey = (N4 D)

ie{0,1}, j=0, k=0,...,m,
l<i<a, j=0, k=m,
i=0, 1<j<b, k=m.

In the definition of the polynomials g;;x(x, y), we replace each occurrence of x - y by
N therefore, the polynomials g;jx(x, y) contain only monomials that are powers of x or
powers of y. From (7) and (8), we obtain that (p, g) is a root of g;;x(x, y) modulo ¢™,
for all previous (i, j, k):

gijx(p,q) =0 mod ¢™.
Now, we assume that we are given the high-order bits py of p and the high-order bits
qo of g. More precisely, for some integers X and Y, we write p = po - X + xo and
q =qo-Y + vy, with 0 < xp < X and 0 < yy < Y. The integers py and g will
eventually be recovered by exhaustive search.
We define the translated polynomials:

Li(x,y) = gijk(po- X +x,q0- Y +y).



OF8 J.-S. Coron and A. May

It is easy to see that for all (7, j, k), we have that (xo, yo) is a root of #;x(x, y) modulo
m

@
l,'jk(X(), Yo) = 0 mod go’”.

As in the previous algorithm, our goal is to find a non-zero integer linear combina-
tion i(x, y) of the polynomials #;; (x, y), with small coefficients. Then A (xo, yo) = 0
mod ¢™, and, using again Howgrave-Graham’s lemma, if the coefficients of h(x, y)
are sufficiently small, then % (xg, yo) = O over the integers. Then one can define the
polynomial /4’ (x) = (po - X + x)"** - h(x, N/(po - X + x) — qo - Y). Since h(x, y) is
not identically zero and % (x, y) contains only x powers and y powers, the polynomial
I’ (x) cannot be identically zero. Moreover, h'(xy) = 0, which enables us to recover xg
using any standard root-finding algorithm, and eventually the primes p and g. Given a
polynomial A(x,y) = Y h; jxi y/, we denote by ||2(x, y)| the Euclidean norm of the
vector of its coefficients A;;.

Lemma 6 (Howgrave—Graham). Let h(x,y) € Zlx,y] which is the sum of at most
w monomials. Suppose that h(xg, yo) = 0 mod ¢™ where |xo| < X, |yo| < Y and

lh(xX, yY)|| < ¢™//w. Then h(xo, yo) = 0 holds over the integers.

Proof. We have
i iyi (X0\ (Yo’
o yol = [Y hiiss] = | mx'v! (32) (3)
ivi X0 i ryo\/ ivi
Tl () ()] =S

Vollh(xX, yY)|l < ¢™.

Since h(xg, yo) = 0 mod ¢™, this gives h(xg, yp) = 0. O

IA

IA

We consider the lattice L spanned by the coefficient vectors of the polynomials
tijk(xX, yY). One can see that these coefficient vectors form a triangular basis of a
full-rank lattice of dimension w = 2m + a + b + 1 (for an example, see Fig. 2). The
determinant of the lattice is then the product of the diagonal entries, which gives

det L = X(m+a)(m+a+1)/2Y(m+b)(m+b+1)/2Um(m+l)_ 9)
As previously, using lattice reduction, one obtains a non-zero polynomial 4 (x, y) such
that
G X, yY)ll < 27V - (det L)1Ve.
In order to apply Lemma 6, it is therefore sufficient to have that

2@=D/A (et L)V < 9™ /.

As in the previous section, using /o < 2“~V/2 ¢ > N/2andw—1 > m, itis sufficient
to have

det L < N™e . 2—2»w~(a)—l)' (10)



RSA Secret Key and Factoring OF9

1 X y %2 32 P 33 x4 X5 y4
fooo(xX, yY) | U?
t100(xX, yY) *  UX
too1 (x X, yY) * * U%y
t1o1(xX, yY) * * ¥ UX?
to2(x X, yY) * * * * Uy?
f102(xX, yY) * * * * x  UX?
to3(x X, yY) * * * * * % Y3
ho3(xX, yY) * * * * * * * x4
o3 (x X, yY) * * * * * * * * X3
f013(xX, yY) * * * * * * * * Y4

Fig.2. Thelattice L of the polynomials #;x (x X, yY) form = 3,a = 2and b = 1. The symbol "’ correspond
to non-zero entries whose value is ignored.

We writea = [(u—1)-m—1]andb = [(v—1)-m — 1] for some reals u, v. We obtain
that m +a)(m +a + 1) < m*>u? and (m + b)(m + b + 1) < m*v?. We write X = N%
and Y = N% for some reals 8, §,. From (9) and U < Nf we obtain that

log(det L) 2 u? v?
= e 8 —+8, - —+B)+8-m, 11
log N =m 2 Y2 p pom (b

where log denotes the logarithm in base 2. Moreover, using m(u+v)—3 < v < m(u+v),
we have

log(N™ . 272 @=Dy > (m(u 4 v) — 3) log N — 2m*(u + v)*. (12)

Therefore, combining inequalities (10), (11) and (12), we obtain the following sufficient
condition:
u? v? B+3
—6— =0y, ——B>=—
Urv by =y —h T e
The function u — u — 8, - u?/2 is maximal for u = 1/§,, with a maximum equal to
1/(28). The same holds for the function v — v — 4, - v? /2. Therefore, taking u = 1/6,
and v = 1/4,, we obtain the sufficient condition

1 1 B+3 2 /1 1)\°
— +——B>= —+—) . 13
2ax+25y Fz=, +10gN (5x+5y> (13)

(u+v)>.

For X = N% and Y = N*% satisfying the previous condition and given py and g, such
that p = po- X + xp and g = qo - Y + yo, the algorithm recovers xy, yo and then p, g
in time polynomial in (m, log N). In the following we show that py and gq can actually
be recovered by exhaustive search, while remaining polynomial time in log N.

Let ¢ be such that 0 < ¢ < §/2. We have the following inequalities:

1 1 1 £ 1 1 €
= 2—(1—1——) and > 1+ .
6—e S(1—¢g/8) — § 1) 1-6—¢ 1-6 1-6

From 288(1 — §) < 1, we obtain

1 1 1

< — = .
’3—5(1—5) st 1-s



OF10 J.-S. Coron and A. May

Combining the three previous inequalities, we get

1 n 1 26 > 1+ 1
- el=+—=).
§—e 1—-6—c¢ To\8 (1-9)?

Therefore, taking §, = § — ¢ and §, = 1 — § — &, we obtain from (13) the following
sufficient condition:

S o) ﬂ+3+ 2 1 N 1 2 1+ 1 !
— 8 . _— —_— .
27 = m logN \§—¢ 1-8—¢ 82 (1-=9)2

Moreover, since 0 < ¢ < §/2and § < %, we have

1 2 1
<- and — <4.
§—¢ é 1-5—c¢

Therefore, this gives the following sufficient condition:

S ooy (B3, 2 2+42 L1 !
LW z S )
2777 m  logN \ 8 82 (1—6)2

Taking m = |log N, this condition can always be satisfied for large enough log N.
Taking the corresponding lower bound for &, we obtain ¢ = O(1/log N), which gives
N? < C for some constant C. Therefore, we obtain that py and g, are upper-bounded
by the constants C and 2C:

=
S
IA

B < NB*SX < NE < C,
X = = =

IN'78-8 < 2N® < 2C.

IA

qo =

~|e

This shows that py and gy can be recovered by exhaustive search while remaining
polynomial time in log N. The total running time of our algorithm is then dominated
by running the lattice reduction algorithm on a lattice basis of dimension w = O(m)
and entries bounded by B = N©_ Therefore, using LLL, our algorithm recovers the
factorization of N in time (’)(log12 N). If one uses the L? variant instead of LLL, one
obtains a running time of O(log’ N). |

6. Practical Experiments

We have implemented the two algorithms of Sections 4 and 5, using the LLL imple-
mentation of Shoup’s NTL library [12]. First, we describe in Table 1 the experiments
with prime factors of equal bit-size, with e - d ~ N2. We assume that we are given the £
high-order bits of s = p + ¢g; the observed running time for a single execution of LLL
is denoted by ¢. The total running time for factoring N is then estimated as T ~ 2° - .



RSA Secret Key and Factoring OF11

Table 1. Bit-size of N, number of bits to be exhaustively searched,
lattice dimension, observed running time for a single LLL-reduction
t, and estimated total running time 7', when e - d >~ N 2. The ex-
periments were performed on a 1.6 GHz PC running under Windows

2000/Cygwin.
N (bits) Bits given Dimension t T
512 bits 14 bits 21 70s 13 days
512 bits 10 bits 29 7 min 5 days
512 bits 9 bits 33 16 min 5 days
1024 bits 26 bits 21 7 min 900 years
1024 bits 19 bits 29 40 min 40 years
1024 bits 17 bits 33 90 min 23 years

We obtain that the factorization of N given (e, d) would take a few days for a 512-bit
modulus, and a few years for a 1024-bit modulus. This contrasts with Miller’s algorithm
whose running time is only a fraction of a second for a 1024-bit modulus.

The experiments with prime factors of unbalanced size and with e - d ~ N? are
summarized in Table 2. In this case it was not necessary to know the high-order bits of
s = p + q, and one recovers the factorization of N after a single application of LLL.
The results in Table 2 confirm that the factorization of N is easier when the prime factors
are unbalanced.

7. Conclusion

We have shown the first deterministic polynomial-time algorithm that factors an RSA
modulus N given the pair of public and secret exponents e and d, provided thate-d < N2.
The algorithm is a variant of Coppersmith’s technique for finding small roots of uni-
variate modular polynomial equations. We have also provided a generalization to the
case of unbalanced prime factors. Finally, we note that the problem of the determin-
istic polynomial-time equivalence between finding d and factoring N is not entirely
solved in this paper, because finding an algorithm for e - d > N? remains an open
problem.

Table 2. Bit-size of the RSA modulus N such
that p < N 8 lattice dimension, observed run-
ning time for factoring N, when e - d =~ N2.
The experiments were performed on a 1.6 GHz
PC running under Windows 2000/Cygwin.

N (bits) ) Dimension t
512 0.25 16 2s
512 0.3 29 2 min

1024 0.25 16 15s

1024 0.3 29 10 min




OF12 J.-S. Coron and A. May

References

[1] D.Boneh, G. Durfee and N.A. Howgrave-Graham, Factoring n = p" ¢ for large r, Proceedings of Crypto
’99, pp. 326-337. LNCS, Vol. 1666. Springer-Verlag, Berlin, 1999.
[2] D. Coppersmith, Small solutions to polynomial equations and low exponent vulnerabilities, Journal of
Cryptology, Vol. 10, No. 4, pp. 223-260, 1997.
[3] G. Durfee and P. Nguyen, Cryptanalysis of the RSA schemes with short secret exponent from Asiacrypt
’99, Proceedings of Asiacrypt 2000, pp. 14-29. LNCS, Vol. 1976. Springer-Verlag, Berlin, 2000.
[4] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited, Proceedings of
Cryptography and Coding, pp. 131-142. LNCS, Vol. 1355. Springer-Verlag, Berlin, 1997.
[5] N. Howgrave-Graham, Approximate integer common divisors, Proceedings of CALC ’01, pp. 51-66.
LNCS, Vol. 2146. Springer-Verlag, Berlin, 2001.
[6] A.K.Lenstra, H. W. Lenstra and L. Lovasz, Factoring polynomials with rational coefficients, Mathema-
tische Annalen, Vol. 261, pp. 513-534, 1982
[7] A. May, Computing the RSA secret key is deterministic polynomial time equivalent to factoring, Pro-
ceedings of Crypto 2004, pp. 213-219. LNCS, Vol. 3152. Springer-Verlag, Berlin, 2004.
[8] G. L. Miller, Riemann’s hypothesis and tests for primality, Proceedings of the Seventh Annual ACM
Symposium on the Theory of Computing, pp. 234-239, 1975.
[9] P. Nguyen and D. Stehlé, Floating-point LLL revisited, Proceedings of Eurocrypt 2005, pp. 215-233.
LNCS, Vol. 3494. Springer-Verlag, Berlin, 2005.
[10] P.Q.Nguyen and J. Stern, The two faces of lattices in cryptology, Proceedings of CALC 01, pp. 146-180.
LNCS, Vol. 2146. Springer-Verlag, Berlin, 2001.
[11] R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryp-
tosystems, Communications of the ACM, Vol. 21, No. 2, pp. 120-126, 1978
[12] V. Shoup, NTL: A Library for Doing Number Theory, available online at http: / /www.shoup.net/
ntl/index.html



