Probabilistische Pfadsuche

Frage: Existiert ein Pfad in *G* von *s* nach *t*?

- Deterministisch mit Breitensuche lösbar in Zeit $\mathcal{O}(|V| + |E|)$.
- Erfordert allerdings auch Speicher $\Omega(|V|)$.

Algorithmus PATH

EINGABE: $G = (V, E), s, t \in V$

- Starte einen Random Walk in s.
- 2 Falls t in $4n^3$ Schritten erreicht wird, Ausgabe "Pfad". Sonst Ausgabe "kein Pfad".

Probabilistische Pfadsuche

Satz

Falls ein Pfad von s nach t existiert, so gibt PATH mit Ws $\geq \frac{1}{2}$ die korrekte Antwort. PATH benötigt $\mathcal{O}(\log(|V|))$ Speicher.

Beweis:

- Sei X ZV für die erwartete Zeit von s nach t per Random Walk.
- Es gilt offenbar $\mathbb{E}[X] \le T_G < 4|V| \cdot |E| < 2n^3$. Mit Markov folgt $\Pr(X > 4n^3) \le \frac{\mathbb{E}[X]}{4n^3} < \frac{1}{2}$.
- PATH muss die jetzige Position und die Anzahl Schritte speichern.
- Dies benötigt $\mathcal{O}(\log(|V|))$ Speicher. \square

Motivation Monte Carlo Methode

Algorithmus APPROX- π

EINGABE: m (Anzahl der Samples)

- Setze Z = 0.
- ② FOR i = 1 to m
 - **1** Wähle zufälligen Punkt P = (X, Y) mit $X, Y \in_R [-1, 1]$.
 - 2 Falls $\sqrt{X^2 + Y^2} \le 1$, setze Z = Z + 1. (*P* ist im Einheitskreis)

AUSGABE: $Z \cdot \frac{4}{m}$ als Approximation für π

Anmerkungen:

- ZV $Z_i = 1$ gdw $\sqrt{X^2 + Y^2} \le 1$ in der *i*-ten Iteration.
- Es gilt $\Pr(Z_i = 1) = \frac{\pi}{4}$ und daher $\mathbb{E}[Z] = \sum_{i=1}^m \mathbb{E}[Z_i] = \frac{m\pi}{4}$.
- D.h. $Z' = \frac{4Z}{m}$ ist eine gute Approximation für π .
- Die Chernoff Schranke auf Folie 52 liefert für $0 \le \epsilon \le 1$

$$\Pr(|Z'-\pi| \geq \epsilon \pi) = \Pr(|Z-\tfrac{m\pi}{4}| \geq \tfrac{\epsilon m\pi}{4}) = \Pr(|Z-\mathbb{E}[Z]| \geq \epsilon \mathbb{E}[Z]) \leq 2e^{-\tfrac{m\pi\epsilon^2}{12}}.$$

• D.h. für hinreichend großes *m* wird die Approximation beliebig gut.

(ϵ, δ) -Approximation

Definition (ϵ, δ) -Approximation

Die Ausgabe X eines Alg. ist eine (ϵ, δ) -Approximation für V, falls

$$\Pr(|X - V| \le \epsilon V) \ge 1 - \delta.$$

Anmerkungen:

• APPROX- π liefert eine (ϵ, δ) -Approximation für $\epsilon \leq 1$, falls

$$2e^{-rac{m\pi\epsilon^2}{12}}<\delta$$
, d.h. $m\geqrac{12\ln(rac{2}{\delta})}{\pi\epsilon^2}$.

(ϵ, δ) -Approximation mittels Chernoff

Satz (ϵ, δ) -Approximation mittels Chernoff

Seien X_1, \ldots, X_m unabhängige IV mit $\mu = \mathbb{E}[X_i]$. Es gilt

$$\Pr(|\frac{1}{m}\sum_{i=1}^{m}X_i - \mu| \ge \epsilon\mu) \le \delta \text{ für } m \ge \frac{3\ln(\frac{2}{\delta})}{\epsilon^2\mu}.$$

D.h. *m* Samples liefern eine (ϵ, δ) -Approximation für μ .

Beweis:

- Sei $X=X_1+\ldots+X_m$. Sei $\mu'=\mathbb{E}[X]=m\mu$.
- Wir verwenden die Chernoff Schranke von Folie 52

$$\Pr(|X - \mu'| \ge \delta \mu') \le 2e^{-\frac{\mu'\delta^2}{3}}.$$

Es folgt

$$\Pr(|\frac{1}{m}\sum_{i=1}^{m}X_i - \mu| \ge \epsilon\mu) = \Pr(|X - \mu'| \ge \epsilon\mu') \le 2e^{-m\cdot\frac{\mu\epsilon^2}{3}} \le \delta. \square$$

DNF Counting

Szenario:

• Betrachten Probleme, die Eingaben x auf Werte V(x) abbilden.

Problem DNF Counting

Gegeben: Formel ϕ in disjunktiver Normalform (DNF)

Gesucht: Anzahl der erfüllenden Belegungen $V(\phi)$ von ϕ

Anmerkungen:

- Beispiel für DNF-Formel: $\phi = (x_1 \wedge \overline{x_2}) \vee (x_1 \wedge x_3)$.
- Es ist einfach, die Erfüllbarkeit von DNF-Formeln zu entscheiden.

SAT \leq_{ρ} **DNF Counting**, d.h. DNF Counting ist NP-schwer.

- Sei ϕ eine SAT-Formel. Wir betrachten $\bar{\phi}$.
- ullet Schreibe $ar{\phi}$ mit de Morgans Regel als DNF-Formel.
- ullet ϕ erfüllbar gdw. es existiert eine Belegung, die $ar{\phi}$ nicht erfüllt.
- Zähle die Anzahl der erfüllenden Belegungen von $\bar{\phi}$.
- Ist diese weniger als 2^n , so ist ϕ erfüllbar.

FPRAS

Sei |x| die Eingabegröße von x.

Definition FPRAS

Ein Algorithmus A ist ein FPRAS (fully polynomial randomized approximation scheme), falls A bei Eingabe x, ϵ, δ mit $0 < \epsilon, \delta < 1$ eine (ϵ, δ) -Approximation von V(x) in Zeit polynomiell in $\frac{1}{\epsilon}$, $\ln(\frac{1}{\delta})$, |x| liefert.

Algorithmus NAIVE-DNF COUNTING

EINGABE: DNF-Formel $\phi(x_1, \ldots, x_n)$, m

- Setze X = 0.
- FOR i = 1 to m
 - **1** Wähle uniform eine Belegung B von x_1, \ldots, x_n .
 - **2** Falls B erfüllend, setze X := X + 1.

AUSGABE: $Y = X \cdot \frac{2^n}{m}$ als Approximation für $V(\phi)$

Analyse Naive-DNF Counting

Satz Analyse Naive-DNF Counting

Für $V(\phi) \ge \frac{2^n}{\text{poly}(n)}$ ist NAIVE-DNF COUNTING ein FPRAS.

Beweis:

- Sei die IV $X_i = 1$ gdw. B in Iteration i erfüllend. Sei $X = \sum_{i=1}^{m} X_i$.
- Es gilt $\mu = \Pr(X_i = 1) = \frac{V(\phi)}{2^n}$, d.h. $\mathbb{E}[Y] = \mathbb{E}[X] \cdot \frac{2^n}{m} = V(\phi)$.
- D.h. $\frac{X}{m}$ liefert eine (ϵ, δ) Approximation für $\mu = \frac{V(\phi)}{2^n}$, falls

$$m \geq \frac{3\ln(\frac{2}{\delta})}{\epsilon^2\mu} = \frac{3\ln(\frac{2}{\delta})\cdot 2^n}{\epsilon^2V(\phi)}.$$

- Damit ist $Y = \frac{X}{m} \cdot 2^n$ eine (ϵ, δ) Approximation für $V(\phi)$.
- Für $V(\phi) \ge \frac{2^n}{\operatorname{poly}(n)}$ ist m polynomiell in $\frac{1}{\epsilon}$, $\ln(\frac{1}{\delta})$, n.
- D.h. NAIVE-DNF COUNTING ist ein FPRAS für DNF Counting.

Problem: Für $V(\phi) = \text{poly}(n)$ benötigen wir exp. viele Samples m.