Samplen von erfüllenden Belegungen

Verbessertes Samplen:

- Sei $\phi = C_1 \vee \ldots \vee C_t$.
- ullet OBdA enthalte keine Klausel C_i eine Variable und deren Negation.
- Sei B_i die Menge der erfüllenden Belegungen von C_i.
- Sei ℓ_i die Anzahl der Literale in C_i . Es gilt $|B_i| = 2^{n-\ell_i}$.
- Definiere $U = \{(i, b) \mid 1 \le i \le t \text{ und } b \in B_i\}$ mit $|U| = \sum_{i=1}^t 2^{n-\ell_i}$.
- Belegungen können mehrmals in *U* auftauchen.
- Die Anzahl erfüllender Belegungen von ϕ ist $d(\phi) = |\bigcup_{i=1}^t B_i|$.
- Wir z\u00e4hlen nur das erste Auftreten einer Belegung durch

$$S = \{(i, b) \mid 1 \le i \le t, b \in B_i, b \notin B_j \text{ für } j < i\} \text{ mit } |S| = d(\phi).$$

Idee: Sample uniform aus *U*, zähle wie oft man dabei in *S* landet.

DFN-COUNTING

Uniformes Samplen aus U:

- Wähle Klausel *i* mit Ws $\frac{|B_i|}{|U|}$.
- Wähle zufällig eine erfüllende Belegung $b \in B_i$.
- Die Literale aus C_i müssen dafür auf wahr gesetzt werden.
- Die in C_i nicht auftretenden Variablen werden uniform gesetzt.
- Damit wird jedes $(i,b) \in U$ ausgewählt mit Ws $\frac{|B_i|}{|U|} \cdot \frac{1}{|B_i|} = \frac{1}{|U|}$.

Algorithmus DNF-COUNTING

EINGABE: $\phi(x_1, ..., x_n) = C_1 \lor ... \lor C_t$ (C_i enthalte ℓ_i Literale), m

- Setze X = 0.
- ② Berechne $|B_i| = 2^{n-\ell_i}$ für i = 1, ..., t. Berechne $|U| = \sum_{i=1}^t |B_i|$.
- - Wähle Klausel *i* mit Ws $\frac{|B_i|}{|U|}$ aus.
 - **2** Wähle uniform eine erfüllende Belegung $b \in B_i$.
 - **3** Falls $b \notin B_j$ für $1 \le j < i$, setze X = X + 1. (effizient testbar)

AUSGABE: $Y = \frac{X}{m} \cdot |U|$

Analyse von DFN-COUNTING

Satz DFN-Counting ist FPRAS

DFN-Counting ist ein FPRAS für $m = \lceil \frac{3t}{\epsilon^2} \ln(\frac{2}{\delta}) \rceil$.

Beweis:

- Wir wählen in 3.2 ein uniformes $b \in U$. Es gilt $\Pr(b \in S) \ge \frac{1}{t}$.
- Sei IV $X_k = 1$ gdw in Iteration k der Wert von X erhöht wird.
- D.h. $\mu=\mathbb{E}[X_k]\geq \frac{1}{t}$ bzw. $t\geq \frac{1}{\mu}$. Für die Wahl $m=\lceil \frac{3t\ln(\frac{2}{\delta})}{\epsilon^2} \rceil$ folgt $m\geq \frac{3\ln(\frac{2}{\delta})}{\epsilon^2\mu}$.
- Mit Chernoff-Schranke: $\frac{X}{m}$ liefert eine (ϵ, δ) -Approximation von $\frac{|S|}{|U|}$.
- Damit liefert $\frac{X}{m} \cdot |U|$ eine (ϵ, δ) -Approximation von |S|. \square

Beobachtung: Geeignetes Samplen erlaubt approximatives Zählen.

Markov Ketten Monte Carlo Methode (MCMC)

Bsp: Sample in G = (V, E) uniform eine unabhängige Menge.

Idee: Konstruiere eine Markov Kette mit folgenden Eigenschaften

- ▶ Die Zustände bestehen aus den unabhängigen Mengen in G.
- ▶ Der stationäre Zustand π ist die Gleichverteilung.
- Sei X_0 ein Startzustand und X_0, X_1, \ldots ein Lauf der Kette.
- Nach einer hinreichend großen Zahl Schritte r erreichen wir π .
- Verwende $X_r, X_{2r}, X_{3r}, \dots$ als Approximation uniformer Samples.
- Man kann r und die Qualität der Samples explizit bestimmen.

MCMC mit uniformer Verteilung

Frage: Wann ist π uniform?

- In Graphen ist die stationäre Verteilung abhängig vom Grad.
- Idee: Erzeuge gleichen Grad *M* durch Selbstkanten.
- Graphen mit Selbstkanten sind nicht bipartit.

Satz Uniforme stationäre Verteilung

Sei Ω ein endlicher Zustandsraum mit Nachbarn $\{N(x) \mid x \in \Omega\}$. Sei $N = \max_{x \in \Omega} |N(x)|$ und $M \in \mathbb{N}$ mit $M \geq N$. Eine Markov Kette mit

$$P_{x,y} = \begin{cases} \frac{1}{M} & \text{für } x \neq y \text{ und } y \in N(x) \\ 0 & \text{für } x \neq y \text{ und } y \notin N(x) \\ 1 - \frac{N(x)}{M} & \text{für } x = y \end{cases}$$

besitzt uniforme stationäre Verteilung.

Beweis: (ohne Beweis)

Uniformes Samplen unabhängiger Mengen

Algorithmus Markov Kette ISET

- EINGABE: G = (V, E)
 - Wähle Startzustand $X_0 = \emptyset$.
 - ② Berechnung von X_{i+1} aus X_i für alle $i \ge 0$:
 - **1** Wähle $v \in_R V$.
 - 2 Falls $v \in X_i$ setze $X_{i+1} = X_i \setminus \{v\}$.
 - **③** Falls $v \notin X_i$ und $X_i \cup \{v\}$ unabhängig ist, setze $X_{i+1} = X_i \cup \{v\}$.

Anmerkungen:

- Jedes X_i ist nach Konstruktion eine unabhängige Menge.
- Benachbarte X_i unterscheiden sich in höchstens einem Knoten.
- Jede unabhängige Menge von G kann von ISET erreicht werden.

Uniformes Samplen unabhängiger Mengen

Satz Unifomes Samplen unabhängiger Mengen

ISET besitzt uniforme stationäre Verteilung π , falls $|E| \ge 1$.

Beweis:

- Sei $\{u, v\} \in E$. Angenommen wir sind im Zustand $X_i = \{u\}$.
- Dann gilt $P_{u,u} > 0$, d.h. wir haben eine Selbstkante.
- Für $x \neq y$ gilt entweder $P_{x,y} = \frac{1}{|V|}$ oder $P_{x,y} = 0$.
- Ferner gilt $\sum_{v} P_{x,y} = 1$.
- ullet Damit ist voriger Satz (Folie 116) anwendbar, und π ist uniform. \square

