RUHR-UNIVERSITÄT BOCHUM LEHRSTUHL FÜR KRYPTOLOGIE UND IT-SICHERHEIT Prof. Dr. Alexander May Gottfried Herold

Hausübungen zur Vorlesung Quantenalgorithmen SS 2016

Blatt 4 / 2. Juni 2016

Abgabe: 13. Juni 2016, 10.00 Uhr (vor der Vorlesung), Kasten NA/02

AUFGABE 1 (4 Punkte):

Sei $f: \mathbb{F}_2^n \to \mathbb{F}_2$ eine beliebige Funktion. Gegeben sei ein Quanten-Schaltkreis Q auf n+1 Qubits, der für alle $\vec{x} \in \mathbb{F}_2^n$, $y \in \mathbb{F}_2$ die Abbildung $|\vec{x}y\rangle \mapsto (-1)^{f(\vec{x})y}|\vec{x}y\rangle$ berechnet.

Konstruieren Sie unter Verwendung von Q und Standard-Quantengates (Toffoli, CNOT, W_2) einen Quantenschaltkreis, der die reversible Einbettung $U_f : |\vec{x}y\rangle \mapsto |\vec{x}\rangle \otimes |f(\vec{x}) \oplus y\rangle$ berechnet.

AUFGABE 2 (6 Punkte):

Betrachten Sie die Abbildung $f: \mathbb{F}_2^4 \to \mathbb{F}_2^4$, $f(x_1, x_2, x_3, x_4) := (x_1 + x_2, x_2 + x_3, x_3 + x_4, x_4 + x_1)$. Sie dürfen als bekannt voraussetzen, dass dies eine 2: 1-Abbildung mit $f(\vec{x}) = f(\vec{x} \oplus \vec{s})$ für geeignetes \vec{s} ist.

Wir möchten den Algorithmus von Simon anwenden, um s zu finden.

- (a) Geben einen Quantenschaltkreis für die reversible Einbettung von f an.
- (b) Geben Sie den Quantenschaltkreis Q_S des Algorithmus von Simon für dieses f an.
- (c) Angenommen Sie messen (in der Notation der Vorlesung) in 3 Iterationen von Q_S die Ergebnisse $y_1 = (1, 1, 0, 0), \ y_2 = (1, 0, 1, 0), \ y_3 = (1, 0, 0, 1).$ Berechnen Sie daraus \vec{s} .
- (d) Zeigen Sie, dass n-1 Vektoren aus \mathbb{F}_2^n mit Wahrscheinlichkeit

$$\prod_{i=0}^{n-2} (1 - 2^{i-n})$$

linear unabhängig über \mathbb{F}_2 sind. Mit welcher Wahrscheinlichkeit reicht Ihnen die Messung von 3 Vektoren, um \vec{s} in (c) eindeutig zu bestimmen?

Bitte wenden!

AUFGABE 3 (3 Punkte):

Zeigen Sie, dass das Toffoli-Gate $\{T\}$ r-universell ist.

Erinnerung/Klarstellung: Beachten Sie, dass laut Definition von r-Universalität Hilfvariablen und Konstanten 0,1 zur Verfügung haben.

AUFGABE 4 (7 Punkte):

In dieser Aufgabe wollen wir zeigen, dass man mit einem Algorithmus zum Finden der Periode nicht nur RSA brechen, sondern sogar faktorisieren kann. Sei hierzu $N = p_1 \cdots p_k$ Produkt von $k \geq 2$ ungeraden Primzahlen. Wir nehmen der Einfachheit halber an, dass die p_i paarweise verschieden sind.

Sei $a \in \mathbb{Z}_N^*$ uniform gewählt. Sei $t = \operatorname{ord}_{\mathbb{Z}_N^*}(a)$ die Ordnung von a in \mathbb{Z}_N^* . Sei weiterhin $t_i = \operatorname{ord}_{\mathbb{Z}_{p_i}^*}(a)$ die Ordnung von a in $\mathbb{Z}_{p_i}^*$.

Schreibe $t = 2^s \cdot u$ sowie $t_i = 2^{s_i} \cdot u_i$ mit u, u_i ungerade.

Schreibe $|\mathbb{Z}_{p_i}^*| = p_i - 1 = 2^{r_i} \cdot q_i$ mit $r_i \geq 1$ und q_i ungerade (nicht notwendig prim).

- (a) Zeigen Sie, dass $t = \text{kgV}(t_1, \dots, t_k)$ und $s = \text{max}\{s_1, \dots, s_k\}$ gilt.
- (b) Zeigen Sie, dass für jedes i unabhängig voneinander gilt: Mit Wahrscheinlichkeit $\frac{1}{2}$ ist $s_i = r_i$.
- (c) Zeigen Sie, dass mit Wahrscheinlichkeit $\geq \frac{1}{4}$ ein Paar $i \neq j$ mit $s_i \neq s_j$ existiert.
- (d) Zeigen Sie, dass $a^{2^{s_i-1}u} \mod p_i = -1$ ist, falls $s_i \geq 1$ gilt.
- (d) Sei $s \ge 1$. Zeigen Sie, dass

$$a^{2^{s-1}u} \bmod p_i = \begin{cases} -1, \text{ falls } s_i = s \\ +1 \text{ falls } s_i < s \end{cases}$$

gilt.

- (e) Zeigen Sie, dass mit Wahrscheinlichkeit $\geq \frac{1}{4}$ gilt, dass $ggT(N, a^{2^{s-1}u} + 1)$ ein nichttrivialer Teiler von N ist.
- (f) Sei PERIODE(N,a) ein Algorithmus, der zu gegebenem $N=p_1\cdots p_k$ von obiger Form und $a\in\mathbb{Z}_N^*$ in Laufzeit T(N) die Ordnung $t=\operatorname{ord}_{\mathbb{Z}_N^*}(a)$ ausgibt. Konstruieren Sie mittels PERIODE einen Algorithmus, der in erwarteter Laufzeit $\mathcal{O}(T(N)\log(N)^3)$ einen nicht-trivialen Teiler von N ausgibt.

Hinweis: Verwenden Sie den chin. Restsatz. Sie dürfen verwenden, dass $\mathbb{Z}_{p_i}^*$ zyklisch ist. $s_i = r_i$ gilt gdw. a kein quadratischer Rest modulo p_i ist. Beachten Sie, dass im Fall $s_i \neq s_j$ stets $s \geq 1$ ist. Der Algorithmus, den Sie in (f) angeben sollen, benutzt keine Quanten (ausser PERIODE tut dies).